In quantum computation and quantum information processing, the manipulation and engineering of quantum systems to suit certain purposes are an ongoing task. One such example is quantum state transfer(QST), an essentia...In quantum computation and quantum information processing, the manipulation and engineering of quantum systems to suit certain purposes are an ongoing task. One such example is quantum state transfer(QST), an essential requirement for both quantum communication and large-scale quantum computation. Here we engineer a chain of four superconducting qubits with tunable couplers to realize the perfect state transfer(PST) protocol originally proposed in quantum spin networks and successfully demonstrate the efficient transfer of an arbitrary single-qubit state from one end of the chain to the other,achieving a high fidelity of 0.986 in just 25 ns. This demonstrated QST is readily to extend to larger chain and multi-node configurations, thus serving as a desirable tool for scalable quantum information processing.展开更多
The objective in this presentation is to introduce some of the unique properties and applications of nullors in active circuit analysis and designs. The emphasis is to discuss the role nullors can play in symbolic rep...The objective in this presentation is to introduce some of the unique properties and applications of nullors in active circuit analysis and designs. The emphasis is to discuss the role nullors can play in symbolic representation of transfer functions. To show this we adopt the topological platform for the circuit analysis and use a recently developed Admittance Method (AM) to achieve the Sum of Tree Products (STP), replacing the determinant and cofactors of the Nodal Admittance Matrix (NAM) of the circuit. To construct a transfer function, we start with a given active circuit and convert all its controlled sources and I/O-ports to nullors. Now, with a solid nullor circuit (passive elements and nullors) we first eliminate the passive elements through AM operations. This produces the STPs. Second, the all-nullor circuit is then used to find the signs or the STPs. Finally, the transfer function (in symbolic, if chosen) is obtained from the ratio between the STPs.展开更多
Photoinduced intermolecular charge transfer(PICT)determines the voltage loss in bulk heterojunction(BHJ)organic photovoltaics(OPVs),and this voltage loss can be minimized by inducing efficient PICT,which requires ener...Photoinduced intermolecular charge transfer(PICT)determines the voltage loss in bulk heterojunction(BHJ)organic photovoltaics(OPVs),and this voltage loss can be minimized by inducing efficient PICT,which requires energy-state matching between the donor and acceptor at the BHJ interfaces.Thus,both geometrically and energetically accessible delocalized state matching at the hot energy level is crucial for achieving efficient PICT.In this study,an effective method for quantifying the hot state matching of OPVs was developed.The degree of energy-state matching between the electron donor and acceptor at BHJ interfaces was quantified using a mismatching factor(MF)calculated from the modified optical density of the BHJ.Furthermore,the correlation between the open-circuit voltage(Voc)of the OPV device and energy-state matching at the BHJ interface was investigated using the calculated MF.The OPVs with small absolute MF values exhibited high Voc values.This result clearly indicates that the energy-state matching between the donor and acceptor is crucial for achieving a high Voc in OPVs.Because the MF indicates the degree of energy-state matching,which is a critical factor for suppressing energy loss,it can be used to estimate the Voc loss in OPVs.展开更多
Lithium iron phosphate batteries have been increasingly utilized in recent years because their higher safety performance can improve the increasing trend of recurring thermal runaway accidents.However,the safety perfo...Lithium iron phosphate batteries have been increasingly utilized in recent years because their higher safety performance can improve the increasing trend of recurring thermal runaway accidents.However,the safety performance and mechanism of high-capacity lithium iron phosphate batteries under internal short-circuit challenges remain to be explored.This work analyzes the thermal runaway evolution of high-capacity LiFePO_(4) batteries under different internal heat transfer modes,which are controlled by different penetration modes.Two penetration cases involving complete penetration and incomplete penetration were detected during the test,and two modes were performed incorporating nails that either remained or were removed after penetration to comprehensively reveal the thermal runaway mechanism.A theoretical model of microcircuits and internal heat conduction is also established.The results indicated three thermal runaway evolution processes for high-capacity batteries,which corresponded to the experimental results of thermal equilibrium,single thermal runaway,and two thermal runaway events.The difference in heat distribution in the three phenomena is determined based on the microstructure and material structure near the pinhole.By controlling the heat dissipation conditions,the time interval between two thermal runaway events can be delayed from 558 to 1417 s,accompanied by a decrease in the concentration of in-situ gas production during the second thermal runaway event.展开更多
A new kind of simple and flexible CO2 welding system was developed to carry out waveform control. The system consisted of IGBT inverter, PWM circuit and microprocessor unit ( MPU) , in which the output current of co...A new kind of simple and flexible CO2 welding system was developed to carry out waveform control. The system consisted of IGBT inverter, PWM circuit and microprocessor unit ( MPU) , in which the output current of constant current (CC) power supply could be changed according to transient physical state, and the variable down slope rate control could be used to ensure a stable welding process. The welding experiment results proved the effectiveness of this control approach.展开更多
Short circuit transfer involves bridging between the consumable electrode and the weld pool, associated with variations of electrical parameters which characterize the change of molten metal bridge state and are very ...Short circuit transfer involves bridging between the consumable electrode and the weld pool, associated with variations of electrical parameters which characterize the change of molten metal bridge state and are very important for the control of .spatter. In this paper, electrical process parameters and short circuit transfer images were simultaneously recorded with a LabView-based synchronous sensing and visualizing system. The arc^bridge resistance and derivatives of welding current, arc voltage and arc resistance at various instants were calculated by means of offline analysis of the welding current, arc voltage and droplet images. Parameters and their feature values indicating the onset of short circuit and the oncoming necking-down of molten metal bridge were determined. Using the calculated feature values, bridge-state-feedback control for .short circuit transfer was realized with a spatter rate less than 0. 25%.展开更多
A heavy-ion irradiation experiment is studied in digital storage cells with different design approaches in 130?nm CMOS bulk Si and silicon-on-insulator (SOI) technologies. The effectiveness of linear energy transf...A heavy-ion irradiation experiment is studied in digital storage cells with different design approaches in 130?nm CMOS bulk Si and silicon-on-insulator (SOI) technologies. The effectiveness of linear energy transfer (LET) with a tilted ion beam at the 130?nm technology node is obtained. Tests of tilted angles θ=0 ° , 30 ° and 60 ° with respect to the normal direction are performed under heavy-ion Kr with certain power whose LET is about 40?MeVcm 2 /mg at normal incidence. Error numbers in D flip-flop chains are used to determine their upset sensitivity at different incidence angles. It is indicated that the effective LETs for SOI and bulk Si are not exactly in inverse proportion to cosθ , furthermore the effective LET for SOI is more closely in inverse proportion to cosθ compared to bulk Si, which are also the well known behavior. It is interesting that, if we design the sample in the dual interlocked storage cell approach, the effective LET in bulk Si will look like inversely proportional to cosθ very well, which is also specifically explained.展开更多
Properties of the nonlinear transfer function are studied in this paper and the n-th order stabili-ty, n-th order frequency response and n-th order sensitivity as well as a novel theory and implementationon the sensit...Properties of the nonlinear transfer function are studied in this paper and the n-th order stabili-ty, n-th order frequency response and n-th order sensitivity as well as a novel theory and implementationon the sensitivity of nonlinear transfer system are proposed.展开更多
By means of high-speed photograph and synchronous oscillograph, the appearance and technical features of non-explosive short circuiting transfer using basic electrodes are investigated, and the conditions to form this...By means of high-speed photograph and synchronous oscillograph, the appearance and technical features of non-explosive short circuiting transfer using basic electrodes are investigated, and the conditions to form this metal transfer mode are discussed. It is shown that the metal transfer mode has its high frequency of droplet, short period of arc extinguishing and long arc igniting period. This metal transfer mode is expected for basic electrodes for its less spatter and higher deposition efficiency.展开更多
A new simulation model of CO 2 short circuiting transfer welding may be employed to develop a new pattern of welding machine and to predict welding process parameters to obtain the optimum welding technology propert...A new simulation model of CO 2 short circuiting transfer welding may be employed to develop a new pattern of welding machine and to predict welding process parameters to obtain the optimum welding technology properties. In this paper, a new simulating model is developed according to the AWP (adapting welding physics process) waveform control method. Good agreement is shown between the predicted and experimentally determined results. The model will make an important promotion in the development of CO 2 arc welding technique.展开更多
We propose schemes to realize robust quantum states transfer between distant resonators using the topological edge states of a one-dimensional circuit quantum electrodynamics(QED)lattice.Analyses show that the distrib...We propose schemes to realize robust quantum states transfer between distant resonators using the topological edge states of a one-dimensional circuit quantum electrodynamics(QED)lattice.Analyses show that the distribution of edge states can be regulated accordingly with the on-site defects added on the resonators.And we can achieve different types of quantum state transfer without adjusting the number of lattices.Numerical simulations demonstrate that the on-site defects can be used as a change-over switch for high-fidelity single-qubit and two-qubit quantum states transfer.This work provides a viable prospect for flexible quantum state transfer in solid-state topological quantum system.展开更多
In this paper, a 3D model of a flat circuit board with a heat generating electronic chip mounted on it has been studied numerically. The conjugate heat transfer including the conduction in the chip and convection with...In this paper, a 3D model of a flat circuit board with a heat generating electronic chip mounted on it has been studied numerically. The conjugate heat transfer including the conduction in the chip and convection with the surrounding fluid has been investigated numerically. Computational fluid dynamics using the finite volume method has been used for modeling the conjugate heat transfer through the chip and the circuit board. Conjugate heat transfer has broad applications in engineering and industrial applications in design of cooling off electronic components. Effects of various inlet velocities have been studied on the heat transfer variation and temperature of the circuit board. Numerical results show that the temperature of the chip reduces as the velocity of the inlet fluid flow increases.展开更多
A simulation model is introduced about the non-linearity process of short-circuiting transfer in CO2 arc welding for displaying the interaction between the inverter power source and welding arc under waveform control....A simulation model is introduced about the non-linearity process of short-circuiting transfer in CO2 arc welding for displaying the interaction between the inverter power source and welding arc under waveform control. In the simulation model, the feedback signals of current and voltage are taken respectively at the different phase in a short circuit periodic time and applied to the PWM (pulse width modulation) module in a model of inverter power source to control the output of power source. The simulation operation about the dynamic process of CO2 short-circuiting transfer welding is implemented on the founded simulation model with a peak arc current of 400 A and a peak voltage of 35 V, producing the dynamic arc waveforms which can embody the effect of inverter harmonic wave. The simulating waveforms are close to that of welding experiments.展开更多
The demand for electric vehicles has increased over the past few years.Wireless power transfer for electric vehicles provides more flexibility than traditional plug-in charging technology.Charging couplers are critica...The demand for electric vehicles has increased over the past few years.Wireless power transfer for electric vehicles provides more flexibility than traditional plug-in charging technology.Charging couplers are critical components in wireless power transfer systems.The thermal effect produced by the magnetic coupler in work will cause the temperature of the device to rise rapidly,affecting the work efficiency,transfer power,operation reliability,and service life.This paper modeled and analyzed each component's temperature distribution characteristics and thermal behavior.Firstly,the magnetic coupler's mutual inductance and magnetic circuit model are established,and the thermal model of the magnetic coupler analyzes the heat generation process.The thermal models of the coupler under three different magnetic core distributions are established,and the temperature rise of each component is obtained.The temperature rise of different parts of the coupler is verified by the temperature rise test structure of the experiment.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12034018 and 11625419)。
文摘In quantum computation and quantum information processing, the manipulation and engineering of quantum systems to suit certain purposes are an ongoing task. One such example is quantum state transfer(QST), an essential requirement for both quantum communication and large-scale quantum computation. Here we engineer a chain of four superconducting qubits with tunable couplers to realize the perfect state transfer(PST) protocol originally proposed in quantum spin networks and successfully demonstrate the efficient transfer of an arbitrary single-qubit state from one end of the chain to the other,achieving a high fidelity of 0.986 in just 25 ns. This demonstrated QST is readily to extend to larger chain and multi-node configurations, thus serving as a desirable tool for scalable quantum information processing.
文摘The objective in this presentation is to introduce some of the unique properties and applications of nullors in active circuit analysis and designs. The emphasis is to discuss the role nullors can play in symbolic representation of transfer functions. To show this we adopt the topological platform for the circuit analysis and use a recently developed Admittance Method (AM) to achieve the Sum of Tree Products (STP), replacing the determinant and cofactors of the Nodal Admittance Matrix (NAM) of the circuit. To construct a transfer function, we start with a given active circuit and convert all its controlled sources and I/O-ports to nullors. Now, with a solid nullor circuit (passive elements and nullors) we first eliminate the passive elements through AM operations. This produces the STPs. Second, the all-nullor circuit is then used to find the signs or the STPs. Finally, the transfer function (in symbolic, if chosen) is obtained from the ratio between the STPs.
基金National Research Foundation of Korea,Grant/Award Number:2022R1A6A1A03051158BrainLink Program,Grant/Award Number:2022H1D3A3A01077343Nano Material Technology Development Program,Grant/Award Number:2021M3H4A1A02057007。
文摘Photoinduced intermolecular charge transfer(PICT)determines the voltage loss in bulk heterojunction(BHJ)organic photovoltaics(OPVs),and this voltage loss can be minimized by inducing efficient PICT,which requires energy-state matching between the donor and acceptor at the BHJ interfaces.Thus,both geometrically and energetically accessible delocalized state matching at the hot energy level is crucial for achieving efficient PICT.In this study,an effective method for quantifying the hot state matching of OPVs was developed.The degree of energy-state matching between the electron donor and acceptor at BHJ interfaces was quantified using a mismatching factor(MF)calculated from the modified optical density of the BHJ.Furthermore,the correlation between the open-circuit voltage(Voc)of the OPV device and energy-state matching at the BHJ interface was investigated using the calculated MF.The OPVs with small absolute MF values exhibited high Voc values.This result clearly indicates that the energy-state matching between the donor and acceptor is crucial for achieving a high Voc in OPVs.Because the MF indicates the degree of energy-state matching,which is a critical factor for suppressing energy loss,it can be used to estimate the Voc loss in OPVs.
基金supported by the National Key R&D Program of China(2021YFB2402001)the China National Postdoctoral Program for Innovative Talents(BX20220286)+1 种基金the China Postdoctoral Science Foundation(2022T150615)supported by the Youth Innovation Promotion Association CAS(Y201768)。
文摘Lithium iron phosphate batteries have been increasingly utilized in recent years because their higher safety performance can improve the increasing trend of recurring thermal runaway accidents.However,the safety performance and mechanism of high-capacity lithium iron phosphate batteries under internal short-circuit challenges remain to be explored.This work analyzes the thermal runaway evolution of high-capacity LiFePO_(4) batteries under different internal heat transfer modes,which are controlled by different penetration modes.Two penetration cases involving complete penetration and incomplete penetration were detected during the test,and two modes were performed incorporating nails that either remained or were removed after penetration to comprehensively reveal the thermal runaway mechanism.A theoretical model of microcircuits and internal heat conduction is also established.The results indicated three thermal runaway evolution processes for high-capacity batteries,which corresponded to the experimental results of thermal equilibrium,single thermal runaway,and two thermal runaway events.The difference in heat distribution in the three phenomena is determined based on the microstructure and material structure near the pinhole.By controlling the heat dissipation conditions,the time interval between two thermal runaway events can be delayed from 558 to 1417 s,accompanied by a decrease in the concentration of in-situ gas production during the second thermal runaway event.
基金Supported by Research Project of Henan Science and Technology Foundation(0124110209,0211061900).
文摘A new kind of simple and flexible CO2 welding system was developed to carry out waveform control. The system consisted of IGBT inverter, PWM circuit and microprocessor unit ( MPU) , in which the output current of constant current (CC) power supply could be changed according to transient physical state, and the variable down slope rate control could be used to ensure a stable welding process. The welding experiment results proved the effectiveness of this control approach.
基金This work is supported by Shandong Natural Science Foundation ( Key Project) under contract No. ZR2010EZ005.
文摘Short circuit transfer involves bridging between the consumable electrode and the weld pool, associated with variations of electrical parameters which characterize the change of molten metal bridge state and are very important for the control of .spatter. In this paper, electrical process parameters and short circuit transfer images were simultaneously recorded with a LabView-based synchronous sensing and visualizing system. The arc^bridge resistance and derivatives of welding current, arc voltage and arc resistance at various instants were calculated by means of offline analysis of the welding current, arc voltage and droplet images. Parameters and their feature values indicating the onset of short circuit and the oncoming necking-down of molten metal bridge were determined. Using the calculated feature values, bridge-state-feedback control for .short circuit transfer was realized with a spatter rate less than 0. 25%.
基金Supported by the Key Laboratory of Microsatellites,Chinese Academy of Sciences
文摘A heavy-ion irradiation experiment is studied in digital storage cells with different design approaches in 130?nm CMOS bulk Si and silicon-on-insulator (SOI) technologies. The effectiveness of linear energy transfer (LET) with a tilted ion beam at the 130?nm technology node is obtained. Tests of tilted angles θ=0 ° , 30 ° and 60 ° with respect to the normal direction are performed under heavy-ion Kr with certain power whose LET is about 40?MeVcm 2 /mg at normal incidence. Error numbers in D flip-flop chains are used to determine their upset sensitivity at different incidence angles. It is indicated that the effective LETs for SOI and bulk Si are not exactly in inverse proportion to cosθ , furthermore the effective LET for SOI is more closely in inverse proportion to cosθ compared to bulk Si, which are also the well known behavior. It is interesting that, if we design the sample in the dual interlocked storage cell approach, the effective LET in bulk Si will look like inversely proportional to cosθ very well, which is also specifically explained.
文摘Properties of the nonlinear transfer function are studied in this paper and the n-th order stabili-ty, n-th order frequency response and n-th order sensitivity as well as a novel theory and implementationon the sensitivity of nonlinear transfer system are proposed.
文摘By means of high-speed photograph and synchronous oscillograph, the appearance and technical features of non-explosive short circuiting transfer using basic electrodes are investigated, and the conditions to form this metal transfer mode are discussed. It is shown that the metal transfer mode has its high frequency of droplet, short period of arc extinguishing and long arc igniting period. This metal transfer mode is expected for basic electrodes for its less spatter and higher deposition efficiency.
基金ThisresearchissupportedbytheNationalNatureScienceFoundation (No .5 9975068)andTianjinNatureScienceFoundation (No .993 60 2 911)
文摘A new simulation model of CO 2 short circuiting transfer welding may be employed to develop a new pattern of welding machine and to predict welding process parameters to obtain the optimum welding technology properties. In this paper, a new simulating model is developed according to the AWP (adapting welding physics process) waveform control method. Good agreement is shown between the predicted and experimentally determined results. The model will make an important promotion in the development of CO 2 arc welding technique.
基金supported by the National Natural Science Foundation of China(Grant Nos.61801280,61805134,and 61822114)the Applied Fundamental Research Projects of Shanxi Province,China(Grant No.201801D221015)Science and Technology Innovation Project of Shanxi Normal University(Grant No.2020XSY032)。
文摘We propose schemes to realize robust quantum states transfer between distant resonators using the topological edge states of a one-dimensional circuit quantum electrodynamics(QED)lattice.Analyses show that the distribution of edge states can be regulated accordingly with the on-site defects added on the resonators.And we can achieve different types of quantum state transfer without adjusting the number of lattices.Numerical simulations demonstrate that the on-site defects can be used as a change-over switch for high-fidelity single-qubit and two-qubit quantum states transfer.This work provides a viable prospect for flexible quantum state transfer in solid-state topological quantum system.
文摘In this paper, a 3D model of a flat circuit board with a heat generating electronic chip mounted on it has been studied numerically. The conjugate heat transfer including the conduction in the chip and convection with the surrounding fluid has been investigated numerically. Computational fluid dynamics using the finite volume method has been used for modeling the conjugate heat transfer through the chip and the circuit board. Conjugate heat transfer has broad applications in engineering and industrial applications in design of cooling off electronic components. Effects of various inlet velocities have been studied on the heat transfer variation and temperature of the circuit board. Numerical results show that the temperature of the chip reduces as the velocity of the inlet fluid flow increases.
基金Supported by National Natural Science Foundation of China ( No59975068)Natural Science Foundation of Tianjin ( No993602911)
文摘A simulation model is introduced about the non-linearity process of short-circuiting transfer in CO2 arc welding for displaying the interaction between the inverter power source and welding arc under waveform control. In the simulation model, the feedback signals of current and voltage are taken respectively at the different phase in a short circuit periodic time and applied to the PWM (pulse width modulation) module in a model of inverter power source to control the output of power source. The simulation operation about the dynamic process of CO2 short-circuiting transfer welding is implemented on the founded simulation model with a peak arc current of 400 A and a peak voltage of 35 V, producing the dynamic arc waveforms which can embody the effect of inverter harmonic wave. The simulating waveforms are close to that of welding experiments.
文摘The demand for electric vehicles has increased over the past few years.Wireless power transfer for electric vehicles provides more flexibility than traditional plug-in charging technology.Charging couplers are critical components in wireless power transfer systems.The thermal effect produced by the magnetic coupler in work will cause the temperature of the device to rise rapidly,affecting the work efficiency,transfer power,operation reliability,and service life.This paper modeled and analyzed each component's temperature distribution characteristics and thermal behavior.Firstly,the magnetic coupler's mutual inductance and magnetic circuit model are established,and the thermal model of the magnetic coupler analyzes the heat generation process.The thermal models of the coupler under three different magnetic core distributions are established,and the temperature rise of each component is obtained.The temperature rise of different parts of the coupler is verified by the temperature rise test structure of the experiment.