Impacts of grid architectures on temporal diffusion of PV-based communal grids (community owned minigrids or microgrids) in a rural developing community are modelled and simulated using MATLAB/Simulink and a survey-in...Impacts of grid architectures on temporal diffusion of PV-based communal grids (community owned minigrids or microgrids) in a rural developing community are modelled and simulated using MATLAB/Simulink and a survey-informed agent-based model (ABM) developed in NetLogo. Results show that decentralised control architectures stimulate minigrid formations and connections by allowing easy expansions of the minigrids as each decentralised PV system within a minigrid is treated equally and determines its own real and reactive power, eliminating the need for communication links. This also reduces the cost of implementing such a system;fewer connections are realized with centralised controls as such systems require high speed communication links which make them both difficult to expand and expensive to implement. Results also show that multi-master operation modes lead to more communal grid connections compared to single-master operation modes because in the former, all distributed PV systems within a communal grid have the same rank and can act as masters or can be operated as combinations of master generators (VSIs) and PQ inverters, allowing for more design flexibility and easy connections from potential customers.展开更多
文摘Impacts of grid architectures on temporal diffusion of PV-based communal grids (community owned minigrids or microgrids) in a rural developing community are modelled and simulated using MATLAB/Simulink and a survey-informed agent-based model (ABM) developed in NetLogo. Results show that decentralised control architectures stimulate minigrid formations and connections by allowing easy expansions of the minigrids as each decentralised PV system within a minigrid is treated equally and determines its own real and reactive power, eliminating the need for communication links. This also reduces the cost of implementing such a system;fewer connections are realized with centralised controls as such systems require high speed communication links which make them both difficult to expand and expensive to implement. Results also show that multi-master operation modes lead to more communal grid connections compared to single-master operation modes because in the former, all distributed PV systems within a communal grid have the same rank and can act as masters or can be operated as combinations of master generators (VSIs) and PQ inverters, allowing for more design flexibility and easy connections from potential customers.