期刊文献+
共找到63,410篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of drive imbalance on the particle emission from a Bose-Einstein condensate in a one-dimensional lattice
1
作者 赖龙泉 李照 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期238-243,共6页
Time-periodic driving has been an effective tool in the field of nonequilibrium quantum dynamics,which enables precise control of the particle interactions.We investigate the collective emission of particles from a Bo... Time-periodic driving has been an effective tool in the field of nonequilibrium quantum dynamics,which enables precise control of the particle interactions.We investigate the collective emission of particles from a Bose-Einstein condensate in a one-dimensional lattice with periodic drives that are separate in modulation amplitudes and relative phases.In addition to the enhancement of particle emission,we find that amplitude imbalances lead to energy shift and band broadening,while typical relative phases may give rise to similar gaps.These results offer insights into the specific manipulations of nonequilibrium quantum systems with tone-varying drives. 展开更多
关键词 Bose-Einstein condensate particle emission periodic drive
下载PDF
Research on Driver’s Fatigue Detection Based on Information Fusion
2
作者 Meiyan Zhang Boqi Zhao +4 位作者 Jipu Li Qisong Wang Dan Liu Jinwei Sun Jingxiao Liao 《Computers, Materials & Continua》 SCIE EI 2024年第4期1039-1061,共23页
Driving fatigue is a physiological phenomenon that often occurs during driving.After the driver enters a fatigued state,the attentionis lax,the response is slow,and the ability todeal with emergencies is significantly... Driving fatigue is a physiological phenomenon that often occurs during driving.After the driver enters a fatigued state,the attentionis lax,the response is slow,and the ability todeal with emergencies is significantly reduced,which can easily cause traffic accidents.Therefore,studying driver fatigue detectionmethods is significant in ensuring safe driving.However,the fatigue state of actual drivers is easily interfered with by the external environment(glasses and light),which leads to many problems,such as weak reliability of fatigue driving detection.Moreover,fatigue is a slow process,first manifested in physiological signals and then reflected in human face images.To improve the accuracy and stability of fatigue detection,this paper proposed a driver fatigue detection method based on image information and physiological information,designed a fatigue driving detection device,built a simulation driving experiment platform,and collected facial as well as physiological information of drivers during driving.Finally,the effectiveness of the fatigue detection method was evaluated.Eye movement feature parameters and physiological signal features of drivers’fatigue levels were extracted.The driver fatigue detection model was trained to classify fatigue and non-fatigue states based on the extracted features.Accuracy rates of the image,electroencephalogram(EEG),and blood oxygen signals were 86%,82%,and 71%,separately.Information fusion theory was presented to facilitate the fatigue detection effect;the fatigue features were fused using multiple kernel learning and typical correlation analysis methods to increase the detection accuracy to 94%.It can be seen that the fatigue driving detectionmethod based onmulti-source feature fusion effectively detected driver fatigue state,and the accuracy rate was higher than that of a single information source.In summary,fatigue drivingmonitoring has broad development prospects and can be used in traffic accident prevention and wearable driver fatigue recognition. 展开更多
关键词 Driving fatigue information fusion EEG blood oxygen
下载PDF
Controlled thermally-driven mass transport in carbon nanotubes using carbon hoops
3
作者 李耀隆 李松远 +1 位作者 王美芬 张任良 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期66-69,共4页
Controlling mass transportation using intrinsic mechanisms is a challenging topic in nanotechnology.Herein,we employ molecular dynamics simulations to investigate the mass transport inside carbon nanotubes(CNT)with te... Controlling mass transportation using intrinsic mechanisms is a challenging topic in nanotechnology.Herein,we employ molecular dynamics simulations to investigate the mass transport inside carbon nanotubes(CNT)with temperature gradients,specifically the effects of adding a static carbon hoop to the outside of a CNT on the transport of a nanomotor inside the CNT.We reveal that the underlying mechanism is the uneven potential energy created by the hoops,i.e.,the hoop outside the CNT forms potential energy barriers or wells that affect mass transport inside the CNT.This fundamental control of directional mass transportation may lead to promising routes for nanoscale actuation and energy conversion. 展开更多
关键词 molecular dynamics thermal drive nanotube hoop mass transport
下载PDF
Review of Thermal Design of SiC Power Module for Motor Drive in Electrical Vehicle Application
4
作者 Puqi Ning Xiaoshuang Hui +3 位作者 Dongrun Li Yuhui Kang Jiajun Yang Chaohui Liu 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第3期332-346,共15页
In the current vehicle electric propulsion systems,the thermal design of power modules heavily relies on empirical knowledge,making it challenging to effectively optimize irregularly arranged Pinfin structures,thereby... In the current vehicle electric propulsion systems,the thermal design of power modules heavily relies on empirical knowledge,making it challenging to effectively optimize irregularly arranged Pinfin structures,thereby limiting their performance.This paper aims to review the underlying mechanisms of how irregularly arranged Pinfins influence the thermal characteristics of power modules and introduce collaborative thermal design with DC bus capacitor and motor.Literature considers chip size,placement,coolant flow direction with the goal of reducing thermal resistance of power modules,minimizing chip junction temperature differentials,and optimizing Pinfin layouts.In the first step,algorithms should efficiently generating numerous unique irregular Pinfin layouts to enhance optimization quality.The second step is to efficiently evaluate Pinfin layouts.Simulation accuracy and speed should be ensured to improve computational efficiency.Finally,to improve overall heat dissipation effectiveness,papers establish models for capacitors,motors,to aid collaborative Pinfin optimization.These research outcomes will provide essential support for future developments in high power density motor drive for vehicles. 展开更多
关键词 Thermal design Power module Pinfin Motor drive
下载PDF
A Multiscale Reliability-Based Design Optimization Method for Carbon-Fiber-Reinforced Composite Drive Shafts
5
作者 Huile Zhang Shikang Li +3 位作者 Yurui Wu Pengpeng Zhi Wei Wang Zhonglai Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1975-1996,共22页
Carbon fiber composites,characterized by their high specific strength and low weight,are becoming increasingly crucial in automotive lightweighting.However,current research primarily emphasizes layer count and orienta... Carbon fiber composites,characterized by their high specific strength and low weight,are becoming increasingly crucial in automotive lightweighting.However,current research primarily emphasizes layer count and orientation,often neglecting the potential of microstructural design,constraints in the layup process,and performance reliability.This study,therefore,introduces a multiscale reliability-based design optimization method for carbon fiber-reinforced plastic(CFRP)drive shafts.Initially,parametric modeling of the microscale cell was performed,and its elastic performance parameters were predicted using two homogenization methods,examining the impact of fluctuations in microscale cell parameters on composite material performance.A finite element model of the CFRP drive shaft was then constructed,achieving parameter transfer between microscale and macroscale through Python programming.This enabled an investigation into the influence of both micro and macro design parameters on the CFRP drive shaft’s performance.The Multi-Objective Particle Swarm Optimization(MOPSO)algorithm was enhanced for particle generation and updating strategies,facilitating the resolution of multi-objective reliability optimization problems,including composite material layup process constraints.Case studies demonstrated that this approach leads to over 30%weight reduction in CFRP drive shafts compared to metallic counterparts while satisfying reliability requirements and offering insights for the lightweight design of other vehicle components. 展开更多
关键词 Multiscale reliability-based design optimization carbon-fabric-reinforced composite drive shaft
下载PDF
Optimization Control of Multi-Mode Coupling All-Wheel Drive System for Hybrid Vehicle
6
作者 Lipeng Zhang Zijian Wang +1 位作者 Liandong Wang Changan Ren 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期340-355,共16页
The all-wheel drive(AWD)hybrid system is a research focus on high-performance new energy vehicles that can meet the demands of dynamic performance and passing ability.Simultaneous optimization of the power and economy... The all-wheel drive(AWD)hybrid system is a research focus on high-performance new energy vehicles that can meet the demands of dynamic performance and passing ability.Simultaneous optimization of the power and economy of hybrid vehicles becomes an issue.A unique multi-mode coupling(MMC)AWD hybrid system is presented to realize the distributed and centralized driving of the front and rear axles to achieve vectored distribution and full utilization of the system power between the axles of vehicles.Based on the parameters of the benchmarking model of a hybrid vehicle,the best model-predictive control-based energy management strategy is proposed.First,the drive system model was built after the analysis of the MMC-AWD’s drive modes.Next,three fundamental strategies were established to address power distribution adjustment and battery SOC maintenance when the SOC changed,which was followed by the design of a road driving force observer.Then,the energy consumption rate in the average time domain was processed before designing the minimum fuel consumption controller based on the equivalent fuel consumption coefficient.Finally,the advantage of the MMC-AWD was confirmed by comparison with the dynamic performance and economy of the BYD Song PLUS DMI-AWD.The findings indicate that,in comparison to the comparative hybrid system at road adhesion coefficients of 0.8 and 0.6,the MMC-AWD’s capacity to accelerate increases by 5.26%and 7.92%,respectively.When the road adhesion coefficient is 0.8,0.6,and 0.4,the maximum climbing ability increases by 14.22%,12.88%,and 4.55%,respectively.As a result,the dynamic performance is greatly enhanced,and the fuel savings rate per 100 km of mileage reaches 12.06%,which is also very economical.The proposed control strategies for the new hybrid AWD vehicle can optimize the power and economy simultaneously. 展开更多
关键词 Hybrid vehicle All-wheel drive Multi-mode coupling Energy management Model predictive control
下载PDF
Torsional vibration suppression and electromechanical coupling characteristics of electric drive system considering misalignment
7
作者 Jinxin DOU Zhenping LI +2 位作者 Hongliang YAO Muchuan DING Guochong WEI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第11期1987-2010,共24页
The torque ripples resulting from external electromagnetic excitation and mechanical internal excitation contribute to significant torsional vibration issues within electromechanical coupling systems.To mitigate these... The torque ripples resulting from external electromagnetic excitation and mechanical internal excitation contribute to significant torsional vibration issues within electromechanical coupling systems.To mitigate these fluctuations,a passive control strategy centered around a multi-stable nonlinear energy sink(MNES)is proposed.First,models for electromagnetic torque,gear nonlinear meshing torque,and misalignment torque are established.Building upon this foundation,an electromechanical coupling dynamic model of the electric drive system is formulated.Sensitivity analysis is conducted to determine the sensitive nodes of each mode and to provide guidance for the installation of the MNES.The structure of the MNES is introduced,and an electromechanical coupling dynamic model with the MNES is established.Based on this model,the influence of the misaligned angle on the electromechanical coupling characteristics is analyzed.In addition,the vibration suppression performance of the MNES is studied under both speed and uniform speed conditions.Finally,experimental testing is conducted to verify the vibration suppression performance of the MNES.The results indicate that misalignment triggers the emergence of its characteristic frequencies and associated sidebands.Meanwhile,the MNES effectively mitigates the torsional vibrations in the coupled system,demonstrating suppression rates of 52.69%in simulations and 63.3%in experiments. 展开更多
关键词 electric drive system electromechanical coupling nonlinear energy sink(NES) MISALIGNMENT
下载PDF
Review of Three-phase Soft Switching Inverters and Challenges for Motor Drives
8
作者 Haifeng Lu Qiao Wang +1 位作者 Jianyun Chai Yongdong Li 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第2期177-190,共14页
For electric vehicles (EVs),it is necessary to improve endurance mileage by improving the efficiency.There exists a trend towards increasing the system voltage and switching frequency,contributing to improve charging ... For electric vehicles (EVs),it is necessary to improve endurance mileage by improving the efficiency.There exists a trend towards increasing the system voltage and switching frequency,contributing to improve charging speed and power density.However,this trend poses significant challenges for high-voltage and high-frequency motor controllers,which are plagued by increased switching losses and pronounced switching oscillations as consequences of hard switching.The deployment of soft switching technology presents a viable solution to mitigate these issues.This paper reviews the applications of soft switching technologies for three-phase inverters and classifies them based on distinct characteristics.For each type of inverter,the advantages and disadvantages are evaluated.Then,the paper introduces the research progress and control methods of soft switching inverters (SSIs).Moreover,it presents a comparative analysis among the conventional hard switching inverters (HSIs),an active clamping resonant DC link inverter (ACRDCLI) and an auxiliary resonant commuted pole inverter (ARCPI).Finally,the problems and prospects of soft switching technology applied to motor controllers for EVs are put forward. 展开更多
关键词 Soft switching inverters Zero-voltage switching Electric vehicles Motor drives
下载PDF
Optimal Design of the Modular Joint Drive Train for Enhancing Cobot Load Capacity and Dynamic Performance
9
作者 Peng Li Zhenguo Nie +1 位作者 Zihao Li Xinjun Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期26-40,共15页
Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to e... Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to enhance load capacity,equal attention should be paid to the dynamic response characteristics of cobot during the design process to make the cobot more flexible.In this paper,a new method for designing the drive train parameters of cobot is proposed.Firstly,based on the analysis of factors influencing the load capacity and dynamic response characteristics,design criteria for both aspects are established for cobot with all optimization design criteria normalized within the design domain.Secondly,with the cobot in the horizontal pose,the motor design scheme is discretized and it takes the joint motor diameter and gearbox speed ratio as optimization design variables.Finally,all the discrete values of the optimization objectives are obtained through the enumeration method and the Pareto front is used to select the optimal solution through multi-objective optimization.Base on the cobot design method proposed in this paper,a six-axis cobot is designed and compared with the commercial cobot.The result shows that the load capacity of the designed cobot in this paper reaches 8.4 kg,surpassing the 5 kg load capacity commercial cobot which is used as a benchmark.The minimum resonance frequency of the joints is 42.70 Hz. 展开更多
关键词 Multi-objective optimization Modular joint drive train design Load capacity Dynamic response performance
下载PDF
Microstructure and mechanical properties of continuous drive friction welded Ti_(2)AlNb alloy under different rotational rates
10
作者 Zhi-qiang BU Xiu-ping MA +3 位作者 Jia-yun WU Zhen LÜ Hu CHEN Jin-fu LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3221-3232,共12页
Ti_(2)AlNb-based alloy was joined in a continuous drive friction welding machine under different rotational rates(500,1000 and 1500 r/min).The microstructure and mechanical properties of the joints were investigated.I... Ti_(2)AlNb-based alloy was joined in a continuous drive friction welding machine under different rotational rates(500,1000 and 1500 r/min).The microstructure and mechanical properties of the joints were investigated.It is shown that the weld zone(WZ) is fully composed of recrystallized B2 phase,and the grain size decreases with increasing rotational rate.The thermo-mechanically affected zone(TMAZ) suffers severe deformation during welding,due to which most of original precipitation phase is dissolved and streamlines are present.In the heat affected zone(HAZ),only the fine O phase is dissolved.The as-welded joint produced using 1000 r/min has the best mechanical properties,whose strength and elongation are both close to those of the base metal,while the as-welded joint obtained using 500 r/min exhibits the worst mechanical properties.Post-weld annealing treatment annihilates the deformation microstructure and fine O phase precipitates in the joints,consequently improving the mechanical properties significantly.Decomposed α_(2) phase is a weakness for the mechanical performance of the joint since microcracks are apt to form in it in the tensile test. 展开更多
关键词 Ti_(2)AlNb alloy continuous drive friction welding microstructure mechanical properties
下载PDF
Uphill or downhill?Cropland use change and its drivers from the perspective of slope spectrum
11
作者 PAN Sipei LIANG Jiale +1 位作者 CHEN Wanxu PENG Yelin 《Journal of Mountain Science》 SCIE CSCD 2024年第2期484-499,共16页
The continuous decrease of low-slope cropland resources caused by construction land crowding poses huge threat to regional sustainable development and food security.Slope spectrum analysis of topographic and geomorphi... The continuous decrease of low-slope cropland resources caused by construction land crowding poses huge threat to regional sustainable development and food security.Slope spectrum analysis of topographic and geomorphic features is considered as a digital terrain analysis method which reflects the macro-topographic features by using micro-topographic factors.However,pieces of studies have extended the concept of slope spectrum in the field of geoscience to construction land to explore its expansion law,while research on the slope trend of cropland from that perspective remains rare.To address the gap,in virtue of spatial analysis and geographically weighted regression(GWR)model,the cropland use change in the Yangtze River Basin(YRB)from 2000 to 2020 was analyzed and the driving factors were explored from the perspective of slope spectrum.Results showed that the slope spectrum curves of cropland area-frequency in the YRB showed a first upward then a downward trend.The change curve of the slope spectrum of cropland in each province(municipality)exhibited various distribution patterns.Quantitative analysis of morphological parameters of cropland slope spectrum revealed that the further down the YRB,the stronger the flattening characteristics,the more obvious the concentration.The province experienced the greatest downhill cropland climbing(CLC)was Shannxi,while province experienced the highest uphill CLC was Zhejiang.The most common cropland use change type in the YRB was horizontal expansion type.The factors affecting average cropland climbing index(ACCI)were quite stable in different periods,while population density(POP)changed from negative to positive during the study period.This research is of practical significance for the rational utilization of cropland at the watershed scale. 展开更多
关键词 Cropland climbing Land use change Slope spectrum Driving factors Geographically weighted regression Yangtze River Basin
下载PDF
Force Compensation Control for Electro-Hydraulic Servo System with Pump-Valve Compound Drive via QFT-DTOC
12
作者 Kaixian Ba Yuan Wang +4 位作者 Xiaolong He Chunyu Wang Bin Yu Yaliang Liu Xiangdong Kong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期228-246,共19页
Each joint of a hydraulic-driven legged robot adopts a highly integrated hydraulic drive unit(HDU),which features a high power-weight ratio.However,most HDUs are throttling-valve-controlled cylinder systems,which exhi... Each joint of a hydraulic-driven legged robot adopts a highly integrated hydraulic drive unit(HDU),which features a high power-weight ratio.However,most HDUs are throttling-valve-controlled cylinder systems,which exhibit high energy losses.By contrast,pump control systems offer a high efficiency.Nevertheless,their response ability is unsatisfactory.To fully utilize the advantages of pump and valve control systems,in this study,a new type of pump-valve compound drive system(PCDS)is designed,which can not only effectively reduce the energy loss,but can also ensure the response speed and response accuracy of the HDUs in robot joints to satisfy the performance requirements of robots.Herein,considering the force control requirements of energy conservation,high precision,and fast response of the robot joint HDU,a nonlinear mathematical model of the PCDS force control system is first introduced.In addition,pressure-flow nonlinearity,friction nonlinearity,load complexity and variability,and other factors affecting the system are considered,and a novel force control method based on quantitative feedback theory(QFT)and a disturbance torque observer(DTO)is designed,which is denoted as QFT-DTOC herein.This method improves the control accuracy and robustness of the force control system,reduces the effect of the disturbance torque on the control performance of the servo motor,and improves the overall force control performance of the system.Finally,experimental verification is performed using the PCDS performance test platform.The experimental results and quantitative data show that the QFT-DTOC proposed herein can significantly improve the force control performance of the PCDS.The relevant force control method can be used as a bottom-control method for the hydraulic servo system to provide a foundation for implementing the top-level trajectory planning of the robot. 展开更多
关键词 Legged robot Pump-valve compound drive system(PCDS) Force compensation control Quantitative feedback theory(QFT) Disturbance torque observer(DTO)
下载PDF
Effect of CO_(2)flooding in an oil reservoir with strong bottom-water drive in the Tahe Oilfield,Tarim Basin,Northwest China
13
作者 Li Zhang Haiying Liao Maolei Cui 《Energy Geoscience》 EI 2024年第1期230-233,共4页
The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir wit... The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t. 展开更多
关键词 Strong bottom-water drive reservoir CO_(2)flooding Enhanced oil recovery Coning of bottom water Tahe oilfield Tarim Basin Northwest China
下载PDF
Heberlein jet technology drives innovations in demanding technical applications
14
《China Textile》 2024年第2期52-52,共1页
Heberlein Technology AG,Wattwil,Switzerland,March 7,2024–Unique technology for creating advanced technical textiles with exquisite characteristics was featured at the Techtextil in Germany.Heberlein,the leading suppl... Heberlein Technology AG,Wattwil,Switzerland,March 7,2024–Unique technology for creating advanced technical textiles with exquisite characteristics was featured at the Techtextil in Germany.Heberlein,the leading supplier of air interlacing and air texturing jets,plans to convince visitors to the event with critical components–such as the latest PolyJet-TG-3–that can influence both yarn properties and processes. 展开更多
关键词 driveS TECHNOLOGY VISITORS
下载PDF
Research on Switching Characteristics Based on Optimization Design of SiC MOSFET Drive Circuit
15
作者 Wenjie Li Tianhu Wang +1 位作者 Jungang Wang Tailiang Yu 《Instrumentation》 2024年第2期64-71,共8页
With the increasing emphasis on energy conservation,emission reduction and environmental protection,the application prospect of SiC power devices is becoming more and more broad.In the high frequency application of Si... With the increasing emphasis on energy conservation,emission reduction and environmental protection,the application prospect of SiC power devices is becoming more and more broad.In the high frequency application of SiC MOSFET,the change rate of voltage and current in the turn-on and turn-off process increases with the increase of switching frequency.Also,the current and voltage spike oscillation phenomenon is gradually intensified due to the influence of circuit stray parameters.Based on the analysis of SiC MOSFET characteristics,the paper discusses the design requirements and design principles of SiC MOSFET drive circuit.Then,taking the SiC module C2M0080120D of Cree Company as an example,a driver circuit design is realized through the ACPL-355JC optocoupler driver module of Broadcom Company.The circuit not only has the characteristics of fast transmission delay and excellent performance,but also has the functions of overload and short circuit protection.The driving circuit is verified by LTspice simulation software,and the switching characteristics of SiC MOSFET under different working conditions are studied in depth.The experimental results show that the driving circuit can improve the switching time of SiC MOSFET and effectively solve the problem of current and voltage spike oscillation,which lays a foundation for the practical application of SiC MOSFET in the future. 展开更多
关键词 SiC MOSFET switching characteristic drive circuit LTspice
下载PDF
Nullmax纽劢 MaxDrive行泊一体方案
16
《汽车观察》 2024年第3期126-126,共1页
是目前市面上极少有的真融合行泊一体4.0形态方案,具有高准度、高稳定、强性能、易落地的产品优势,传感器深度复用、芯片资源共享、安全高效经济,可满足客户各类需求。立足于Nullmax平台化BEV-AI技术架构,兼顾技术性能和部署成本的双重... 是目前市面上极少有的真融合行泊一体4.0形态方案,具有高准度、高稳定、强性能、易落地的产品优势,传感器深度复用、芯片资源共享、安全高效经济,可满足客户各类需求。立足于Nullmax平台化BEV-AI技术架构,兼顾技术性能和部署成本的双重需求,支持高中低不同算力平台,适配任意传感器,可根据需求进行定制化开发,快速完成全场景智能驾驶功能的量产应用,且向上拓展性极强。 展开更多
关键词 平台化 AI技术 智能驾驶 drive 资源共享 拓展性 全场景
下载PDF
毫末智行 自动驾驶大模型 DriveGPT雪湖·海若
17
《汽车观察》 2024年第3期125-125,共1页
行业首个自动驾驶生成式大模型DriveGPT(雪湖·海若)为大模型技术落地自动驾驶提供了新范式。DriveGPT是由毫末自研的自动驾驶认知大模型升级而来,最初目的主要是解决自动驾驶的认知决策优化问题,其基本过程是在认知模块引入真实人... 行业首个自动驾驶生成式大模型DriveGPT(雪湖·海若)为大模型技术落地自动驾驶提供了新范式。DriveGPT是由毫末自研的自动驾驶认知大模型升级而来,最初目的主要是解决自动驾驶的认知决策优化问题,其基本过程是在认知模块引入真实人驾数据,通过人类反馈强化学习技术,对自动驾驶认知决策模型进行持续优化。当前毫末正在通过引入感知大模型,将DriveGPT升级为通用大模型架构,目标是实现端到端自动驾驶。 展开更多
关键词 自动驾驶 强化学习 GPT 模型架构 drive 认知决策 雪湖 生成式
下载PDF
基于AVL-DRIVE系统的乘用车双离合变速器换挡品质评价分析
18
作者 吴文文 郭玉凤 费员军 《汽车文摘》 2024年第9期28-31,共4页
为了解决搭载双离合变速器车辆在低速行驶状态下易出现顿挫现象的问题,提升动力响应能力以及换挡品质,本文以某款双离合变速箱乘用车为研究对象,基于AVL-DRIVE驾驶性评价系统,在不同驾驶模式下对其进行换挡测试。结果表明,不同的驾驶模... 为了解决搭载双离合变速器车辆在低速行驶状态下易出现顿挫现象的问题,提升动力响应能力以及换挡品质,本文以某款双离合变速箱乘用车为研究对象,基于AVL-DRIVE驾驶性评价系统,在不同驾驶模式下对其进行换挡测试。结果表明,不同的驾驶模式下换挡品质存在较大差异,针对评分较低的项目进行分析并提出优化策略,为汽车制造商改进整车品质提供可靠依据。 展开更多
关键词 DCT变速器 驾驶舒适性 换挡品质 AVL-drive 整车品质
下载PDF
基于UG的拖拉机齿轮传动系统仿真研究
19
作者 杨玉霞 李艳钰 《农机化研究》 北大核心 2025年第1期258-261,268,共5页
设计了一款拖拉机复合行星齿轮的动力系统,并基于UG仿真软件,建立了齿轮参数化模型,得到了齿轮的渐开线和齿廓线,最后建立了齿轮传动系统仿真模型。齿轮传动系统可靠性实验表明:系统齿轮运动符合预期,满足设计要求,证实了系统的可靠性。
关键词 拖拉机 复合行星齿轮 UG 齿轮传动
下载PDF
资源支持、组织能力与价值创造:社区互助养老服务可持续生产的驱动路径
20
作者 翟绍果 韩煜 《海南大学学报(人文社会科学版)》 2025年第1期107-118,共12页
社区互助养老服务何以可持续生产,基于“环境-组织-价值”分析框架,以我国37个社区互助养老典型案例为样本,运用模糊集定性比较分析方法;(fsQCA)探究社区互助养老服务可持续生产的组态驱动路径。研究表明:;(1)外部支持、社区资源、主体... 社区互助养老服务何以可持续生产,基于“环境-组织-价值”分析框架,以我国37个社区互助养老典型案例为样本,运用模糊集定性比较分析方法;(fsQCA)探究社区互助养老服务可持续生产的组态驱动路径。研究表明:;(1)外部支持、社区资源、主体协同、制度化水平、技术赋能与价值创造通过组态效应影响社区互助养老服务的可持续生产;(2)外部支持与社区资源、制度化水平与技术赋能具有潜在替代性,社区资源和价值创造是组态形成的关键因素;(3)党政统合型、社区自组织型、技术嵌入型和协同驱动型是驱动社区互助养老服务可持续生产的4种优化路径。实现社区互助养老服务高水平的可持续生产应坚持系统联动思维,释放多元组态的复合驱动效应,重视社区资源和价值创造的关键作用,选择适宜不同地区发展基础的互助养老模式。 展开更多
关键词 社区互助养老 可持续生产 驱动路径
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部