The preparation process of electrically conductive filler for anisotropic conductive adhesive was performed and discussed.The spherical filler contains tri-layer structures: resin core,Ni-P intermediate coating layer,...The preparation process of electrically conductive filler for anisotropic conductive adhesive was performed and discussed.The spherical filler contains tri-layer structures: resin core,Ni-P intermediate coating layer,Au outer coating layer.The 4 μm resin spherical cores were synthesized by monodispersion polymerization method.Then they were contributed to electrical conductivity by electrolessly plating Ni-P layer and gold layer.These particles have good corrosion resistance,high stability,and enough mechanical strength.When mixed with thermosetting epoxy resin to produce anisotropic conductive adhesive(ACA),it can realize a good conductive bonding between bumps on dies and pads on substrates.This environmentally friendly conductive material offers numerous advantages over conventional solder technology and is an ideal substitute for the lead-contained solder in electronics packaging.展开更多
The deformation behavior and the contact area of conductive particles in anisotropically conductive adhesives (ACA) were investigated by finite element method (FEM). The solid conductive particles are made of pure Ni ...The deformation behavior and the contact area of conductive particles in anisotropically conductive adhesives (ACA) were investigated by finite element method (FEM). The solid conductive particles are made of pure Ni and Cu. The results indicate that the deformation of the conductive particles is inhomogeneous during fabrication. When the reduction in height is small the deformation concentrates in the area near the contact area. As the reduction in height increases, the strain in the area near the contact area increases, and the metal flows toward the circumference, resulting in the increase of the contact area between the conductive particles and pad. The higher the degree of deformation, the larger the contact area. The regression equations were offered to express the relations between the bounding force and the contact area or the reduction in height. An approach of how to obtain the maximum contact area in ACA was discussed.展开更多
Anisotropic conductive adhesive technology for electronics packaging and interconnect application has significantly been developed during the last few years. It is time to make a summary of what has been done in this ...Anisotropic conductive adhesive technology for electronics packaging and interconnect application has significantly been developed during the last few years. It is time to make a summary of what has been done in this field. The present paper reviews the technology development, especially from the reliability point of view. It is pointed out that anisotropic conductive adhesives are now widely used in many applications and the reliability data and models have been developed to a large extent for anisotropic conductive adhesives in various applications.展开更多
基金The National Natural Science Foundation of China(No.10474024)NSFC-RGC Joint Research Scheme(No.60318002)+1 种基金Youth Chenguang Project of Science and Technology of Wuhan City of China(No.20065004116-10)StateKey Lab.of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology,No.WUT2004 M08)
文摘The preparation process of electrically conductive filler for anisotropic conductive adhesive was performed and discussed.The spherical filler contains tri-layer structures: resin core,Ni-P intermediate coating layer,Au outer coating layer.The 4 μm resin spherical cores were synthesized by monodispersion polymerization method.Then they were contributed to electrical conductivity by electrolessly plating Ni-P layer and gold layer.These particles have good corrosion resistance,high stability,and enough mechanical strength.When mixed with thermosetting epoxy resin to produce anisotropic conductive adhesive(ACA),it can realize a good conductive bonding between bumps on dies and pads on substrates.This environmentally friendly conductive material offers numerous advantages over conventional solder technology and is an ideal substitute for the lead-contained solder in electronics packaging.
文摘The deformation behavior and the contact area of conductive particles in anisotropically conductive adhesives (ACA) were investigated by finite element method (FEM). The solid conductive particles are made of pure Ni and Cu. The results indicate that the deformation of the conductive particles is inhomogeneous during fabrication. When the reduction in height is small the deformation concentrates in the area near the contact area. As the reduction in height increases, the strain in the area near the contact area increases, and the metal flows toward the circumference, resulting in the increase of the contact area between the conductive particles and pad. The higher the degree of deformation, the larger the contact area. The regression equations were offered to express the relations between the bounding force and the contact area or the reduction in height. An approach of how to obtain the maximum contact area in ACA was discussed.
文摘Anisotropic conductive adhesive technology for electronics packaging and interconnect application has significantly been developed during the last few years. It is time to make a summary of what has been done in this field. The present paper reviews the technology development, especially from the reliability point of view. It is pointed out that anisotropic conductive adhesives are now widely used in many applications and the reliability data and models have been developed to a large extent for anisotropic conductive adhesives in various applications.