Due to its beneficial health effects,the use of soybean protein has shown a continuous increase,but concerns regarding the allergenicity of soybean antigenic protein have also increased.This study aimed to evaluate th...Due to its beneficial health effects,the use of soybean protein has shown a continuous increase,but concerns regarding the allergenicity of soybean antigenic protein have also increased.This study aimed to evaluate the hydrolytic effects of a non-commercial alkaline protease isolated from the Bacillus subtilis ACCC 01746 on soybeanβ-conglycinin and the allergenicity of its hydrolysates.Alkaline protease of the strain was separated by precipitation method of organic solvents,and theβ-conglycinin was separated by alkali-solution and acid-isolation and purified by use of gel column.Using the degree of hydrolysis(DH)and inhibition rate as evaluation indexes,the enzymatic hydrolysis parameters ofβ-conglycinin was optimized by single factor and L_(9)(3^(4))orthogonal tests,so as to explore the effect of the protease on the hydrolysis degree and the antigenicity ofβ-conglycinin hydrolysates.The results showed that the native enzyme existed as an 18.3 kDa monomer with a 430 U/g maximum activity.The purity ofβ-conglycinin was 84.8%.The single-factor test results showed that DH showed the oppostie trendency with the inhibition rate,and the increase of protein concentration causedmonotone increasing and monotone decreasing of the inhibition rate and the DH,and the optimal protein concentration was 30 mg/mL.The optimization results showed that pH had the largest impacts on both DH and the inhibition rate,followed by enzyme dosage,hydrolysis temperature and hydrolysis time.Under the optimum hydrolysis conditions of protein concentration 30mg/mL,enzymedosage0.7%,hydrolysis time40min,temperature 55°C and pH8.5,the DH reached the highest of 76.28%,and the inhibition rate was the lowest of 27.03%,which was reduced greatly compared with that before optimization.These results suggested that alkaline protease appeared to show a relatively high effeciency in lowering soybean allergenicity,making it possible to produce low-allergenicity soybean protein.展开更多
β-Conglycinin,the main protein of soybean,is a key allergen that causes soybean allergies,and hydrolysis is usually applied to lower its antigenicity.We evaluated the enzymolysis characters ofβ-conglycinin from the ...β-Conglycinin,the main protein of soybean,is a key allergen that causes soybean allergies,and hydrolysis is usually applied to lower its antigenicity.We evaluated the enzymolysis characters ofβ-conglycinin from the perspective of enzymolysis kinetics using alkaline protease from B.subtilis ACCC 01746.A dynamic model describing the hydrolysis ofβ-conglycinin was proposed using the initial substrate concentration,enzyme dosage(enzyme to substrate ratio)and hydrolysis time as variables to illustrate the kinetic behavior of enzymatic hydrolysis.The hydrolysis of soybeanβ-conglycinin was carried out at 60 g/L protein concentration,0.6%enzyme dosage,55℃ and pH 8.5 to observe the peptides with anti-enzymatic activities.The hydrolysates were gradually fractionated by ultrafiltration through cut-off membranes with molecular weights of 40,30,20,and 10 kDa,and their antigenicities were evaluated using indirect competitive enzyme-linked immunosorbent assay.The results showed that the degree of hydrolysis(DH)ofβ-conglycinin decreased as theβ-conglycinin concentration(S0)increased,but increased with enzyme dosage(E0)increasing.Thus,the enzymatic hydrolysis ofβ-conglycinin followed the first-order kinetics model.The hydrolysis rate(V)was(527.89C_(E0)-2.5533C_(S0))exp(-0.022DH),the DH-hydrolysis time was 45.454ln[1+(11.614C_(E0)/C_(S0)-0.0562)t],and the correlated kinetic constants k2 and kd were 527.89 min^(−1)and 8.6126 min^(−1),respectively.The hydrolysis behavior ofβ-conglycinin varied considerably among theα',α,andβsubunits.Faster hydrolysis rates were observed for theα'andαsubunits compared to theβsubunit.The relative molecular weights of the intercepted peptides from the hydrolysates were 14.8-40.1 kDa,and the antigenicity of the peptides with smaller molecular weight was reduced,but not removed completely.However,the alkaline protease from the strain appeared to effectively reduce the allergenicity ofβ-conglycinin.Therefore,it is possible to produce less allergenic soybean proteins using enzymatic hydrolysis.Additionally,the microbial alkaline protease may serve as a potential novel food enzyme and should be evaluated for the development of hypoallergenic foods.展开更多
基金Thanks to Grain&Corn Engineering Technology Research Center,State Administration of Grain(GA2017004)Science and Technology Research Project of Henan(172102110205 and 182102310676)for funding support.
文摘Due to its beneficial health effects,the use of soybean protein has shown a continuous increase,but concerns regarding the allergenicity of soybean antigenic protein have also increased.This study aimed to evaluate the hydrolytic effects of a non-commercial alkaline protease isolated from the Bacillus subtilis ACCC 01746 on soybeanβ-conglycinin and the allergenicity of its hydrolysates.Alkaline protease of the strain was separated by precipitation method of organic solvents,and theβ-conglycinin was separated by alkali-solution and acid-isolation and purified by use of gel column.Using the degree of hydrolysis(DH)and inhibition rate as evaluation indexes,the enzymatic hydrolysis parameters ofβ-conglycinin was optimized by single factor and L_(9)(3^(4))orthogonal tests,so as to explore the effect of the protease on the hydrolysis degree and the antigenicity ofβ-conglycinin hydrolysates.The results showed that the native enzyme existed as an 18.3 kDa monomer with a 430 U/g maximum activity.The purity ofβ-conglycinin was 84.8%.The single-factor test results showed that DH showed the oppostie trendency with the inhibition rate,and the increase of protein concentration causedmonotone increasing and monotone decreasing of the inhibition rate and the DH,and the optimal protein concentration was 30 mg/mL.The optimization results showed that pH had the largest impacts on both DH and the inhibition rate,followed by enzyme dosage,hydrolysis temperature and hydrolysis time.Under the optimum hydrolysis conditions of protein concentration 30mg/mL,enzymedosage0.7%,hydrolysis time40min,temperature 55°C and pH8.5,the DH reached the highest of 76.28%,and the inhibition rate was the lowest of 27.03%,which was reduced greatly compared with that before optimization.These results suggested that alkaline protease appeared to show a relatively high effeciency in lowering soybean allergenicity,making it possible to produce low-allergenicity soybean protein.
基金Authors wish to thank to Grain&Corn Engineering Technology Research Center,State Administration of Grain(GA2017004)for funding support.
文摘β-Conglycinin,the main protein of soybean,is a key allergen that causes soybean allergies,and hydrolysis is usually applied to lower its antigenicity.We evaluated the enzymolysis characters ofβ-conglycinin from the perspective of enzymolysis kinetics using alkaline protease from B.subtilis ACCC 01746.A dynamic model describing the hydrolysis ofβ-conglycinin was proposed using the initial substrate concentration,enzyme dosage(enzyme to substrate ratio)and hydrolysis time as variables to illustrate the kinetic behavior of enzymatic hydrolysis.The hydrolysis of soybeanβ-conglycinin was carried out at 60 g/L protein concentration,0.6%enzyme dosage,55℃ and pH 8.5 to observe the peptides with anti-enzymatic activities.The hydrolysates were gradually fractionated by ultrafiltration through cut-off membranes with molecular weights of 40,30,20,and 10 kDa,and their antigenicities were evaluated using indirect competitive enzyme-linked immunosorbent assay.The results showed that the degree of hydrolysis(DH)ofβ-conglycinin decreased as theβ-conglycinin concentration(S0)increased,but increased with enzyme dosage(E0)increasing.Thus,the enzymatic hydrolysis ofβ-conglycinin followed the first-order kinetics model.The hydrolysis rate(V)was(527.89C_(E0)-2.5533C_(S0))exp(-0.022DH),the DH-hydrolysis time was 45.454ln[1+(11.614C_(E0)/C_(S0)-0.0562)t],and the correlated kinetic constants k2 and kd were 527.89 min^(−1)and 8.6126 min^(−1),respectively.The hydrolysis behavior ofβ-conglycinin varied considerably among theα',α,andβsubunits.Faster hydrolysis rates were observed for theα'andαsubunits compared to theβsubunit.The relative molecular weights of the intercepted peptides from the hydrolysates were 14.8-40.1 kDa,and the antigenicity of the peptides with smaller molecular weight was reduced,but not removed completely.However,the alkaline protease from the strain appeared to effectively reduce the allergenicity ofβ-conglycinin.Therefore,it is possible to produce less allergenic soybean proteins using enzymatic hydrolysis.Additionally,the microbial alkaline protease may serve as a potential novel food enzyme and should be evaluated for the development of hypoallergenic foods.