[Objective] This study aimed to develop ACGM markers for the clustering analysis of large grained Brassica napus materials. [Method] A total of 44 pairs of ACGM primers were designed according to 18 genes related to A...[Objective] This study aimed to develop ACGM markers for the clustering analysis of large grained Brassica napus materials. [Method] A total of 44 pairs of ACGM primers were designed according to 18 genes related to Arabidopsis grain development and their homologous rape EST sequences. After electrophoresis, 18 pairs of ACGM primers were selected for the clustering analysis of 16 larger grained samples and four fine grained samples of rapeseed. [Result] PCR result showed that 2-6 specific bands were respectively amplified by each pair of primes, and all the bands were polymorphic and repeatable, suggesting that the optimized ACGM markers were useful for clustering analysis of B. napus species. Clustering analysis revealed that the 20 rapeseed samples were divided into three clusters A, B, and C at similarity coefficient 0.6. Then, the clusters A and B were further divided into five sub clusters A1, A2, A3, B1 and B2 at similarity coefficient 0.67. [Conclusion] This study will provide theoretical and practical values for rape breeding.展开更多
Amplified consensus genetic marker (ACGM) is a PCR-based marker technique that uses primers designed within conserved regions of coding sequences. After a comparison of Cryptomeria japonica and Arabidopsis ESTs to s...Amplified consensus genetic marker (ACGM) is a PCR-based marker technique that uses primers designed within conserved regions of coding sequences. After a comparison of Cryptomeria japonica and Arabidopsis ESTs to search for conserved sequences, 237 single e-PCR products were obtained. We randomly selected 110 candidate ACGM markers to test. Of the 110 candidate ACGM markers tested, 106 yielded stable and clear PCR products in C. japonica. We then tested the utility of these 106 primer pairs in 10 species, representing 7 genera of Taxodi- aceae. The number of specific amplification primer pairs among those 10 species varied from 49 to 103 (or 46.2±97.2%). The 106 primer pairs (ACGM loci) were high transferable to Cryptomeria fortunei Hooibrenk (97.2%) but were low in Metasequoia glyptostroboides (46.2%). The number of PCR bands per primer pair ranged from 1.06 to 1.15, which means that most of the ACGM primers can obtain a single band within these 10 Taxodiaceae species. In summary, our study shows that ACGM is a technique applicable for marker development even in species with limited sequence data.展开更多
基金Supported by the National Natural Science Foundation of China(30860147)Open Funds of National Key Laboratory of Crop Genetic Improvement(ZK200902)Natural Science Foundation of Yunnan Province(2011FB117)~~
文摘[Objective] This study aimed to develop ACGM markers for the clustering analysis of large grained Brassica napus materials. [Method] A total of 44 pairs of ACGM primers were designed according to 18 genes related to Arabidopsis grain development and their homologous rape EST sequences. After electrophoresis, 18 pairs of ACGM primers were selected for the clustering analysis of 16 larger grained samples and four fine grained samples of rapeseed. [Result] PCR result showed that 2-6 specific bands were respectively amplified by each pair of primes, and all the bands were polymorphic and repeatable, suggesting that the optimized ACGM markers were useful for clustering analysis of B. napus species. Clustering analysis revealed that the 20 rapeseed samples were divided into three clusters A, B, and C at similarity coefficient 0.6. Then, the clusters A and B were further divided into five sub clusters A1, A2, A3, B1 and B2 at similarity coefficient 0.67. [Conclusion] This study will provide theoretical and practical values for rape breeding.
基金funded by the Natural Science Foundation of China (30800879)project 2009R50035 supported by Forest Seedling Industry Innovative Team of Zhejiang province in China
文摘Amplified consensus genetic marker (ACGM) is a PCR-based marker technique that uses primers designed within conserved regions of coding sequences. After a comparison of Cryptomeria japonica and Arabidopsis ESTs to search for conserved sequences, 237 single e-PCR products were obtained. We randomly selected 110 candidate ACGM markers to test. Of the 110 candidate ACGM markers tested, 106 yielded stable and clear PCR products in C. japonica. We then tested the utility of these 106 primer pairs in 10 species, representing 7 genera of Taxodi- aceae. The number of specific amplification primer pairs among those 10 species varied from 49 to 103 (or 46.2±97.2%). The 106 primer pairs (ACGM loci) were high transferable to Cryptomeria fortunei Hooibrenk (97.2%) but were low in Metasequoia glyptostroboides (46.2%). The number of PCR bands per primer pair ranged from 1.06 to 1.15, which means that most of the ACGM primers can obtain a single band within these 10 Taxodiaceae species. In summary, our study shows that ACGM is a technique applicable for marker development even in species with limited sequence data.