The degradation of the epoxy system was studied for the prepared six blend samples with the incorporation of 0 wt% - 25 wt% carboxyl terminated butadiene acrylonitrile (CTBN) copolymer, on a dynamic basis using Thermo...The degradation of the epoxy system was studied for the prepared six blend samples with the incorporation of 0 wt% - 25 wt% carboxyl terminated butadiene acrylonitrile (CTBN) copolymer, on a dynamic basis using Thermo gravimetric analysis (TGA) technique under a nitrogen atmosphere. The blends were prepared by physical mixing and were cured with diamine. The degradation of each sample followed second-order degradation kinetics, which was calculated by Coats-Redfern equation using best-fit analysis. This was further confirmed by linear regression analysis. The validity of data was checked by t-test statistical analysis. From this value of reaction order, activation energy (E), and pre-exponential factor (Z) were calculated. It was found that the activation energy increased with the addition of liquid elastomer.展开更多
Using novolac phenolic resin, aniline and formaldehyde as raw materials, benzoxazine-phenolic copolymers with different percentages of benzoxazine rings were prepared. FT-IR was adopted to characterize the molecular s...Using novolac phenolic resin, aniline and formaldehyde as raw materials, benzoxazine-phenolic copolymers with different percentages of benzoxazine rings were prepared. FT-IR was adopted to characterize the molecular structure of the novolac-type phenolic resin and the benzoxazine-phenolic copolymer BP31. In order to understand the curing process of the copolymers, the curing behavior and curing kinetic characteristics were studied by differential scanning calorimetry (DSC), and the catalytical effect of phenolic hydroxyl on the curing behavior of copolymers was investigated. To investigate the thermal properties of this resin, the thermal degradation behaviors of the cured samples were studied by thermal gravimetric (TG) method, and glass-transition temperatures (Tg) of the cured copolymers were also evaluated by DSC. The dynamic Ozawa method was adopted to determine the kinetic parameters of the curing process as well. The activation energy is 78.8 kJ/mol and the reaction rate constant is in the range from 40.0 to 5.2 (K/min)" according to reaction temperatures. The Ozawa exponent decreases from 2.4 to 0.7 with the increase of reaction temperature, and curing mechanism is expounded briefly according to the results. TG result shows that the highest char yield of copolymers is 50.3%. The highest Tg of copolymers is 489 K, which is much higher than that of pure benzoxazine resin.展开更多
A block copolymer of PDMS-b-PGMA is synthesized by polymerizing glycidyl methacrylate(GMA)via reversible addition-fragmentation chain transfer(RAFT)polymerization applying a polydimethylsiloxane(PDMS)based macro-RAFT ...A block copolymer of PDMS-b-PGMA is synthesized by polymerizing glycidyl methacrylate(GMA)via reversible addition-fragmentation chain transfer(RAFT)polymerization applying a polydimethylsiloxane(PDMS)based macro-RAFT agent,which is then performed to functionalize the quartz fibers(QFs@PDMS-b-PGMA)via a simple coating process.Finally,the QFs@PDMS-b-PGMA/bisphenol A dicyanate ester(BADCy)wave-transparent laminated composites are fabricated by high-temperature molding.Nuclear magnetic resonance(NMR)spectroscopy,Fourier transform infrared(FT-IR)spectroscopy and size ex-clusion chromatography(SEC)demonstrate the successful preparation of PDMS-b-PGMA with expected structure.When the molar mass and coating amount of PDMS-b-PGMA are respectively 8100 g/mol and 2.0 wt.%,QFs@PDMS-b-PGMA/BADCy wave-transparent laminated composites present optimal mechan-ical properties and wave-transparent performance.The interlaminar shear strength(ILSS)and flexural strength are 53.6 and 552.0 MPa,respectively.Meanwhile,the dielectric constant and dielectric loss val-ues are 2.61 and 0.0028 at 1 MHz(wave transmittance of 93.8%),showing good stability at different frequencies(102-106 Hz and 8.4-12.4 GHz)and temperatures(25-250℃).展开更多
The UP PER UP blocked copolymer was prepared by the reaction of unsaturated polyester(UP)and polyepoxy resin(PER)under suitable conditions. The modified photosensitive resin was formed after the addition of the active...The UP PER UP blocked copolymer was prepared by the reaction of unsaturated polyester(UP)and polyepoxy resin(PER)under suitable conditions. The modified photosensitive resin was formed after the addition of the active monomers into the copolymer. The UV cured process of the resin was investigated by means of FTIR spectrum and the properties of the UV cured coat were characterized in terms of TG/DTA and other analysis. The results indicated that the UV cured resin showed the advantages of both unsaturated polyester resin and polyepoxy resin. The base resistant ability, thermostability and surface hardness of the resin were greatly improved. The volume shrinkage of the sample was lowered from 7% to 0.8% and the adhesion power on substrate was increased. Thus the applications of unsaturated polyester resin were widely promoted.展开更多
文摘The degradation of the epoxy system was studied for the prepared six blend samples with the incorporation of 0 wt% - 25 wt% carboxyl terminated butadiene acrylonitrile (CTBN) copolymer, on a dynamic basis using Thermo gravimetric analysis (TGA) technique under a nitrogen atmosphere. The blends were prepared by physical mixing and were cured with diamine. The degradation of each sample followed second-order degradation kinetics, which was calculated by Coats-Redfern equation using best-fit analysis. This was further confirmed by linear regression analysis. The validity of data was checked by t-test statistical analysis. From this value of reaction order, activation energy (E), and pre-exponential factor (Z) were calculated. It was found that the activation energy increased with the addition of liquid elastomer.
基金Project (20050106) supported by the Key Science and Technology Item of Guangdong Province,China
文摘Using novolac phenolic resin, aniline and formaldehyde as raw materials, benzoxazine-phenolic copolymers with different percentages of benzoxazine rings were prepared. FT-IR was adopted to characterize the molecular structure of the novolac-type phenolic resin and the benzoxazine-phenolic copolymer BP31. In order to understand the curing process of the copolymers, the curing behavior and curing kinetic characteristics were studied by differential scanning calorimetry (DSC), and the catalytical effect of phenolic hydroxyl on the curing behavior of copolymers was investigated. To investigate the thermal properties of this resin, the thermal degradation behaviors of the cured samples were studied by thermal gravimetric (TG) method, and glass-transition temperatures (Tg) of the cured copolymers were also evaluated by DSC. The dynamic Ozawa method was adopted to determine the kinetic parameters of the curing process as well. The activation energy is 78.8 kJ/mol and the reaction rate constant is in the range from 40.0 to 5.2 (K/min)" according to reaction temperatures. The Ozawa exponent decreases from 2.4 to 0.7 with the increase of reaction temperature, and curing mechanism is expounded briefly according to the results. TG result shows that the highest char yield of copolymers is 50.3%. The highest Tg of copolymers is 489 K, which is much higher than that of pure benzoxazine resin.
文摘A block copolymer of PDMS-b-PGMA is synthesized by polymerizing glycidyl methacrylate(GMA)via reversible addition-fragmentation chain transfer(RAFT)polymerization applying a polydimethylsiloxane(PDMS)based macro-RAFT agent,which is then performed to functionalize the quartz fibers(QFs@PDMS-b-PGMA)via a simple coating process.Finally,the QFs@PDMS-b-PGMA/bisphenol A dicyanate ester(BADCy)wave-transparent laminated composites are fabricated by high-temperature molding.Nuclear magnetic resonance(NMR)spectroscopy,Fourier transform infrared(FT-IR)spectroscopy and size ex-clusion chromatography(SEC)demonstrate the successful preparation of PDMS-b-PGMA with expected structure.When the molar mass and coating amount of PDMS-b-PGMA are respectively 8100 g/mol and 2.0 wt.%,QFs@PDMS-b-PGMA/BADCy wave-transparent laminated composites present optimal mechan-ical properties and wave-transparent performance.The interlaminar shear strength(ILSS)and flexural strength are 53.6 and 552.0 MPa,respectively.Meanwhile,the dielectric constant and dielectric loss val-ues are 2.61 and 0.0028 at 1 MHz(wave transmittance of 93.8%),showing good stability at different frequencies(102-106 Hz and 8.4-12.4 GHz)and temperatures(25-250℃).
文摘The UP PER UP blocked copolymer was prepared by the reaction of unsaturated polyester(UP)and polyepoxy resin(PER)under suitable conditions. The modified photosensitive resin was formed after the addition of the active monomers into the copolymer. The UV cured process of the resin was investigated by means of FTIR spectrum and the properties of the UV cured coat were characterized in terms of TG/DTA and other analysis. The results indicated that the UV cured resin showed the advantages of both unsaturated polyester resin and polyepoxy resin. The base resistant ability, thermostability and surface hardness of the resin were greatly improved. The volume shrinkage of the sample was lowered from 7% to 0.8% and the adhesion power on substrate was increased. Thus the applications of unsaturated polyester resin were widely promoted.