Accelerated crucible rotation technique(ACRT) has been used for the directional solidification of Al-4.5wt% Cu binary alloy.By rotating the crucible at varying rate and direction,forced liquid flows are aroused These ...Accelerated crucible rotation technique(ACRT) has been used for the directional solidification of Al-4.5wt% Cu binary alloy.By rotating the crucible at varying rate and direction,forced liquid flows are aroused These flows include Ekman flow,Couette flow and Spiral Shear flow.Especially,Ekman flow acts directly at the L/S interface,changes diffusion and heat exchange conditions and has strong influences on the morphology of L/S interface.Experimental results show that,compared with normal Bridgman specimens,the solidification region is much narrower and the cell spacing is much smaller in ACRT specimens.These influences become much stronger when the accelerating rate is increased.展开更多
MnxCd1-xln2Te4 (x=0.1) ingot was successfully grown by the modified Bridgman technique, which applied the accelerated crucible rotation technique (ACRT) in Bridgman process, or briefly ACRT-B. The growth interface pro...MnxCd1-xln2Te4 (x=0.1) ingot was successfully grown by the modified Bridgman technique, which applied the accelerated crucible rotation technique (ACRT) in Bridgman process, or briefly ACRT-B. The growth interface profile shape and the composition distribution in the MnxCd1-xln2Te4 (x=0.1) ingot were analyzed. Even though the stoichiometric composition was synthesized in the original ingot, the composition has been redistributed during the ACRT-B growth process. Mn and Cd contents decrease while In increases along the longitudinal axis. The partition ratios of solutes Mn, Cd and In at the growth interface are evaluated by a mathematical method based on the experimental data, which are found to be 1.286, 1.926 and 0.729 in α phase growth process, and 1.120, 1.055 and 0.985 in β phase growth process, respectively. In the radial direction, Mn and Cd contents increase while In decreases with the distance from the centerline of the ingot.展开更多
The CdZnTe vertical Bridgman single crystal process with accelerated crucible rotation technique (ACRT) has been simulated. Effects have been investigated of the ACRT wave parameters on the solid-liquid interface conc...The CdZnTe vertical Bridgman single crystal process with accelerated crucible rotation technique (ACRT) has been simulated. Effects have been investigated of the ACRT wave parameters on the solid-liquid interface concavity and the solute segregation of the crystal. The results show that ACRT can result in the increase of both the solid-liquid interface concavity and the temperature gradient of the melt in the front of the solid-liquid interface, of which the magnitude varies from small to many times when the ACRT wave parameters change. Of the ACRT wave parameters, the increase of the crucible maximum rotation rate can hardly improve the radial solute segregation of the crystal, but the variation of the crucible acceleration time, the keep time at the maximum rotation rate, and the crucible deceleration time can affect the solute segregation of the single crystal extraordinarily. With suitable wave parameters, ACRT greatly decreases the radial solute segregation of the crystal, and even makes it disappear completely. However, it increases both the axial solute segregation and the radial one notably with bad wave parameters. An excellent single crystal could be gotten, of which a majority part is with no segregation, with ACRT-Bridgman method by adjusting both the ACRT wave parameters and the crystal growth control parameters, such as the initial temperature of the melt, the temperature gradient, and the crucible withdrawal rate, etc.展开更多
文摘Accelerated crucible rotation technique(ACRT) has been used for the directional solidification of Al-4.5wt% Cu binary alloy.By rotating the crucible at varying rate and direction,forced liquid flows are aroused These flows include Ekman flow,Couette flow and Spiral Shear flow.Especially,Ekman flow acts directly at the L/S interface,changes diffusion and heat exchange conditions and has strong influences on the morphology of L/S interface.Experimental results show that,compared with normal Bridgman specimens,the solidification region is much narrower and the cell spacing is much smaller in ACRT specimens.These influences become much stronger when the accelerating rate is increased.
基金This research is supported by the National Natural Science Foundation of China under the contract No.59872027 and 59825109.
文摘MnxCd1-xln2Te4 (x=0.1) ingot was successfully grown by the modified Bridgman technique, which applied the accelerated crucible rotation technique (ACRT) in Bridgman process, or briefly ACRT-B. The growth interface profile shape and the composition distribution in the MnxCd1-xln2Te4 (x=0.1) ingot were analyzed. Even though the stoichiometric composition was synthesized in the original ingot, the composition has been redistributed during the ACRT-B growth process. Mn and Cd contents decrease while In increases along the longitudinal axis. The partition ratios of solutes Mn, Cd and In at the growth interface are evaluated by a mathematical method based on the experimental data, which are found to be 1.286, 1.926 and 0.729 in α phase growth process, and 1.120, 1.055 and 0.985 in β phase growth process, respectively. In the radial direction, Mn and Cd contents increase while In decreases with the distance from the centerline of the ingot.
基金the National Natural Science Foundation of China (Grant Nos. 50006016 , 50372036).
文摘The CdZnTe vertical Bridgman single crystal process with accelerated crucible rotation technique (ACRT) has been simulated. Effects have been investigated of the ACRT wave parameters on the solid-liquid interface concavity and the solute segregation of the crystal. The results show that ACRT can result in the increase of both the solid-liquid interface concavity and the temperature gradient of the melt in the front of the solid-liquid interface, of which the magnitude varies from small to many times when the ACRT wave parameters change. Of the ACRT wave parameters, the increase of the crucible maximum rotation rate can hardly improve the radial solute segregation of the crystal, but the variation of the crucible acceleration time, the keep time at the maximum rotation rate, and the crucible deceleration time can affect the solute segregation of the single crystal extraordinarily. With suitable wave parameters, ACRT greatly decreases the radial solute segregation of the crystal, and even makes it disappear completely. However, it increases both the axial solute segregation and the radial one notably with bad wave parameters. An excellent single crystal could be gotten, of which a majority part is with no segregation, with ACRT-Bridgman method by adjusting both the ACRT wave parameters and the crystal growth control parameters, such as the initial temperature of the melt, the temperature gradient, and the crucible withdrawal rate, etc.