To investigate the acoustic emission(AE)characteristics of quasi-brittle materials like rock and concrete,and to further analyze their damage and failure mechanism under seismic and other dynamic loads,the uniaxial te...To investigate the acoustic emission(AE)characteristics of quasi-brittle materials like rock and concrete,and to further analyze their damage and failure mechanism under seismic and other dynamic loads,the uniaxial tension test of granite cylinder specimens within the strain rate range of 10^-7-10^-4 s^-1 was monitored by AE technology,and the typical AE characteristic parameters were analyzed using statistical and correlation analysis.The experimental results show that,with the increase of strain rate,the peak of AE hit rate appears earlier and increases;the proportion of AE hits with higher duration or amplitude increases significantly,the b-value shows a decreasing trend,and the distribution of AE frequency-amplitude is increasingly discrete.In addition,the obvious characteristic of double dominant frequency bands was observed in AE waveforms by using spectrum analysis,with the increase of strain rate,the percentage of A-type waveforms corresponding to low dominant frequency band increases,while that of D-type waveforms corresponding to high ones decreases accordingly,which is significance for the further study of the damage and failure mechanism of quasi-brittle materials.展开更多
To study the damage mechanisms of anhydrite rock under freeze-thaw cycles, the physicalmechanical properties and the microcracking activities of anhydrite rock were investigated through mass variation, nuclear magneti...To study the damage mechanisms of anhydrite rock under freeze-thaw cycles, the physicalmechanical properties and the microcracking activities of anhydrite rock were investigated through mass variation, nuclear magnetic resonance, scanning electron microscope tests, and uniaxial compression combined with acoustic emission(AE) tests. Results show that with the increase of freeze-thaw processes,the mass, uniaxial compression strength, and elastic modulus of the anhydrite specimens decrease while the porosity and plasticity characteristics increase.For example, after 120 cycles, the uniaxial compression strength and elastic modulus decrease by 46.54% and 60.16%, and the porosity increase by 75%. Combined with the evolution trend of stressstrain curves and the detected events, three stages were labeled to investigate the AE characteristics in freeze-thaw weathered anhydrite rock. It is found that with the increase of freeze-thaw cycles, the proportions of AE counts in stage Ⅰ and stage Ⅱ show a decaying exponential trend. Contrarily, the proportion of AE counts in stage Ⅲ displays an exponential ascending trend. Meanwhile, as the freeze-thaw cycles increase, the low-frequency AE signals increase while the intermediate-frequency AE signals decrease. After 120 cycles, the proportion of low-frequency AE signals increases by 168.95%, and the proportion of intermediate-frequency AE signals reduces by 81.14%. It is concluded that the microtensile cracking events occupy a dominant position during the loading process. With the increase of freeze-thaw cycles, the b value of samples decreases.After 120 cycles, b value decreases by 27.2%, which means that the proportion of cracking events in rocks with small amplitude decreases. Finally, it is proposed that the freeze-thaw damage mechanism of anhydrite is also characterized by the water chemical softening effect.展开更多
基金Funded by the National Natural Science Foundation of China(No.51878245)the Fundamental Research Funds for the Central Universities(No.2019B13114)。
文摘To investigate the acoustic emission(AE)characteristics of quasi-brittle materials like rock and concrete,and to further analyze their damage and failure mechanism under seismic and other dynamic loads,the uniaxial tension test of granite cylinder specimens within the strain rate range of 10^-7-10^-4 s^-1 was monitored by AE technology,and the typical AE characteristic parameters were analyzed using statistical and correlation analysis.The experimental results show that,with the increase of strain rate,the peak of AE hit rate appears earlier and increases;the proportion of AE hits with higher duration or amplitude increases significantly,the b-value shows a decreasing trend,and the distribution of AE frequency-amplitude is increasingly discrete.In addition,the obvious characteristic of double dominant frequency bands was observed in AE waveforms by using spectrum analysis,with the increase of strain rate,the percentage of A-type waveforms corresponding to low dominant frequency band increases,while that of D-type waveforms corresponding to high ones decreases accordingly,which is significance for the further study of the damage and failure mechanism of quasi-brittle materials.
基金the Fundamental Research Funds for the Central Universities(Project No.2022CDJKYJH037)the National Key R&D Program of China(Grant No.2021YFB3901402)。
文摘To study the damage mechanisms of anhydrite rock under freeze-thaw cycles, the physicalmechanical properties and the microcracking activities of anhydrite rock were investigated through mass variation, nuclear magnetic resonance, scanning electron microscope tests, and uniaxial compression combined with acoustic emission(AE) tests. Results show that with the increase of freeze-thaw processes,the mass, uniaxial compression strength, and elastic modulus of the anhydrite specimens decrease while the porosity and plasticity characteristics increase.For example, after 120 cycles, the uniaxial compression strength and elastic modulus decrease by 46.54% and 60.16%, and the porosity increase by 75%. Combined with the evolution trend of stressstrain curves and the detected events, three stages were labeled to investigate the AE characteristics in freeze-thaw weathered anhydrite rock. It is found that with the increase of freeze-thaw cycles, the proportions of AE counts in stage Ⅰ and stage Ⅱ show a decaying exponential trend. Contrarily, the proportion of AE counts in stage Ⅲ displays an exponential ascending trend. Meanwhile, as the freeze-thaw cycles increase, the low-frequency AE signals increase while the intermediate-frequency AE signals decrease. After 120 cycles, the proportion of low-frequency AE signals increases by 168.95%, and the proportion of intermediate-frequency AE signals reduces by 81.14%. It is concluded that the microtensile cracking events occupy a dominant position during the loading process. With the increase of freeze-thaw cycles, the b value of samples decreases.After 120 cycles, b value decreases by 27.2%, which means that the proportion of cracking events in rocks with small amplitude decreases. Finally, it is proposed that the freeze-thaw damage mechanism of anhydrite is also characterized by the water chemical softening effect.