Gyro's drift is not only the main drift error which influences gyro's precision but also the primary factor that affects gyro's reliability. Reducing zero drift and random drift is a key problem to the output of a ...Gyro's drift is not only the main drift error which influences gyro's precision but also the primary factor that affects gyro's reliability. Reducing zero drift and random drift is a key problem to the output of a gyro signal. A three-layer de-nosing threshold algorithm is proposed based on the wavelet decomposition to dispose the signal which is collected from a running fiber optic gyro (FOG). The coefficients are obtained from the three-layer wavelet packet decomposition. By setting the high frequency part which is greater than wavelet packet threshold as zero, then reconstructing the nodes which have been filtered out noise and interruption, the soft threshold function is constructed by the coefficients of the third nodes. Compared wavelet packet de-noise with forced de-noising method, the proposed method is more effective. Simulation results show that the random drift compensation is enhanced by 13.1%, and reduces zero drift by 0.052 6°/h.展开更多
An important issue of ground-penetrating radar (GPR) signals analysis is de-noising thai is the guarantee of acquiring good detecting effect. The paper illustrates a successful application of digital single process...An important issue of ground-penetrating radar (GPR) signals analysis is de-noising thai is the guarantee of acquiring good detecting effect. The paper illustrates a successful application of digital single processor (DSP) based on wavelet shrinkage algorithm. In order to realize real-time GPP, signals analysis, some key issues are discussed such as the realization of fast wavelet transformation, the selection of CPU chip and the optimization of data movement. Experimenial results show that the DSP based application not only basically meets the real-time requirement of GPP, signals analysis, but also assures the quality of the GPR signals analysis.展开更多
Phase-frequency characte ristics of approximate sinusoidal geomagnetic signals can be used fo r projectile roll positioning and other high-precision trajectory correction applications.The sinusoidal geomagnetic signal...Phase-frequency characte ristics of approximate sinusoidal geomagnetic signals can be used fo r projectile roll positioning and other high-precision trajectory correction applications.The sinusoidal geomagnetic signal deforms in the exposed and magnetically contaminated environment.In order to preciously recognize the roll information and effectively separate the noise component from the original geomagnetic sequence,based on the error source analysis,we propose a moving horizon based wavelet de-noising method for the dual-observed geomagnetic signal filtering where the captured rough roll frequency value provides reasonable wavelet decomposition and reconstruction level selection basis for sampled sequence;a moving horizon window guarantees real-time performance and non-cumulative calculation amount.The complete geomagnetic data in full ballistic range and three intercepted paragraphs are used for performance assessment.The positioning performance of the moving horizon wavelet de-noising method is compared with the band-pass filter.The results show that both noise reduction techniques improve the positioning accuracy while the wavelet de-noising method is always better than the band-pass filter.These results suggest that the proposed moving horizon based wavelet de-noising method of the dual-observed geomagnetic signal is more applicable for various launch conditions with better positioning performance.展开更多
Wavelet forced de-noising algorithm is suitable for denoising of unsteady drilling fluid pulse signal, including baseline drift rectification and two-stage de-noising processing of frame synchronization signal and ins...Wavelet forced de-noising algorithm is suitable for denoising of unsteady drilling fluid pulse signal, including baseline drift rectification and two-stage de-noising processing of frame synchronization signal and instruction signal. Two-stage de-noising processing can reduce the impact of baseline drift and determine automatic peak detection threshold range for signal recognition by distinguishing different features of frame synchronization pulse and instruction pulse. Rising and falling edge relative protruding threshold is defined for peak detection in signal recognition, which can make full use of the degree of the signal peak change and detect peaks flexibly with rising and falling edge relative protruding threshold combination. A synchronous decoding method was designed to reduce position uncertainty of the frame synchronization pulse and eliminate the accumulative error of time base drift, which determines the first instruction pulse position according to position of the frame synchronization pulse and decodes subsequent instruction pulse by taking current instruction pulse as new bit synchronization pulse. Special tool software was developed to tune algorithm parameters, which has a decoding success rate of about 95% for the universal coded signals. For the special coded signals with check byte, decoding success rate using the automatic threshold adjustment algorithm is as high as 99%.展开更多
In the track irregularity detection, the acceleration signals of the inertial measurement unit (IMU) output which with low frequency components and noise, this paper studied a de-noising algorithm. Based on the criter...In the track irregularity detection, the acceleration signals of the inertial measurement unit (IMU) output which with low frequency components and noise, this paper studied a de-noising algorithm. Based on the criterion of consecutive mean square error, a de-noising method for IMU acceleration signals based on empirical mode decomposition (EMD) was proposed. This method can divide the intrinsic mode functions (IMFs) derived from EMD into signal dominant modes and noise dominant modes, then the modes reflecting the important structures of a signal were combined together to form partially reconstructed de-noised signal. Simulations were conducted for simulated signals and a real IMU acceleration signals using this method. Experimental results indicate that this method can efficiently and adaptively remove noise, and this method can better meet the precision requirement.展开更多
This paper considers a corrupted compressed sensing problem and is devoted to recover signals that are approximately sparse in some general dictionary but corrupted by a combination of interference having a sparse rep...This paper considers a corrupted compressed sensing problem and is devoted to recover signals that are approximately sparse in some general dictionary but corrupted by a combination of interference having a sparse representation in a second general dictionary and measurement noise.We provide new restricted isometry property(RIP)analysis to achieve stable recovery of sparsely corrupted signals through Justice Pursuit De-Noising(JPDN)with an additional parameter.Our main tool is to adapt a crucial sparse decomposition technique to the analysis of the Justice Pursuit method.The proposed RIP condition improves the existing representative results.Numerical simulations are provided to verify the reliability of the JPDN model.展开更多
Wavelet de-noising has been well known as an important method of signal de-noising. Recently,most of the research efforts about wavelet de-noising focus on how to select the threshold,where Donoho method is applied wi...Wavelet de-noising has been well known as an important method of signal de-noising. Recently,most of the research efforts about wavelet de-noising focus on how to select the threshold,where Donoho method is applied widely. Compared with traditional 2-band wavelet,3-band wavelet has advantages in many aspects. According to this theory,an adaptive signal de-noising method in 3-band wavelet domain based on nonparametric adaptive estimation is proposed. The experimental results show that in 3-band wavelet domain,the proposed method represents better characteristics than Donoho method in protecting detail and improving the signal-to-noise ratio of reconstruction signal.展开更多
This paper considers the problem of noise cancellation for the magnetic flux leakage (MFL) data obtained from the inspection of oil pipelines. MFL data is contaminated by various sources of noise, and the noise can co...This paper considers the problem of noise cancellation for the magnetic flux leakage (MFL) data obtained from the inspection of oil pipelines. MFL data is contaminated by various sources of noise, and the noise can considerably reduce the detectability of flaw signals in MFL data. This paper presents a new de-noising approach for removing the system noise contained in the MFL data by using the coefficients de-noising with wavelet transform. Experimental results are presented to demonstrate the advantages of this de-noising approach over the conventional wavelet de-noising method.展开更多
Sound waves propagate well underwater making it useful for target locating and communication.Underwater acoustic noise(UWAN)affects the reliability in applications where the noise comes from multiple sources.In this p...Sound waves propagate well underwater making it useful for target locating and communication.Underwater acoustic noise(UWAN)affects the reliability in applications where the noise comes from multiple sources.In this paper,a novel signal de-noising technique is proposed using S-transform.From the time-frequency representation,de-noising is performed using soft thresholding with universal threshold estimation which is then reconstructed.The UWAN used for the validation is sea truth data collected at Desaru beach on the eastern shore of Johor in Malaysia with the use of broadband hydrophones.The comparison is made with the more conventionally used wavelet transform de-noising method.Two types of signals are evaluated:fixed frequency signals and time-varying signals.The results demonstrate that the proposed method shows better signal to noise ratio(SNR)by 4 dB and lower root mean square error(RMSE)by 3 dB achieved at the Nyquist sampling frequency compared to the previously proposed de-noising method like wavelet transform.展开更多
In this paper, a different method for de-noising of ECG signals using wavelets is presented. In this strategy, we will try to design the best wavelet for de-nosing. Genetic algorithm tests wide range of quadrature fil...In this paper, a different method for de-noising of ECG signals using wavelets is presented. In this strategy, we will try to design the best wavelet for de-nosing. Genetic algorithm tests wide range of quadrature filter banks and the best of them will be chosen that minimize the Signal-to-Noise Ratio (SNR). Furthermore, the wavelet function and scaling function related to these filters are reported as the best wavelet for de-noising. Simulation results for de-noising of a noisy ECG signal show that using obtained wavelet by proposed method improves the SNR of about 2.5 dB.展开更多
提出了一种基于声发射(AE)信号对新型点磨削砂轮磨削状态进行实时监测方法.建立了表面粗糙度与AE信号的对应关系,为监测磨削加工表面粗糙度提供了条件.采用单因素实验研究了各参数对AE信号RMS值的影响规律,结果进一步证明了AE信号与表...提出了一种基于声发射(AE)信号对新型点磨削砂轮磨削状态进行实时监测方法.建立了表面粗糙度与AE信号的对应关系,为监测磨削加工表面粗糙度提供了条件.采用单因素实验研究了各参数对AE信号RMS值的影响规律,结果进一步证明了AE信号与表面粗糙度的对应关系.对比分析了砂轮不同磨损状况下的AE信号,依据此信号可对磨削状态进行实时监测.为了区分声发射源性质的异同,对磨削过程中的AE信号进行了频谱分析,砂轮发生磨损时,AE信号在45~65 k Hz,80~90 k Hz,100~110 k Hz频段的能量升高显著,并且在15 k Hz附近出现了很高的尖峰,为监测磨削状态提供了一种可行且有效的方法.展开更多
文摘Gyro's drift is not only the main drift error which influences gyro's precision but also the primary factor that affects gyro's reliability. Reducing zero drift and random drift is a key problem to the output of a gyro signal. A three-layer de-nosing threshold algorithm is proposed based on the wavelet decomposition to dispose the signal which is collected from a running fiber optic gyro (FOG). The coefficients are obtained from the three-layer wavelet packet decomposition. By setting the high frequency part which is greater than wavelet packet threshold as zero, then reconstructing the nodes which have been filtered out noise and interruption, the soft threshold function is constructed by the coefficients of the third nodes. Compared wavelet packet de-noise with forced de-noising method, the proposed method is more effective. Simulation results show that the random drift compensation is enhanced by 13.1%, and reduces zero drift by 0.052 6°/h.
基金Supported by the National Natural Science Founda-tion of China (49984001)
文摘An important issue of ground-penetrating radar (GPR) signals analysis is de-noising thai is the guarantee of acquiring good detecting effect. The paper illustrates a successful application of digital single processor (DSP) based on wavelet shrinkage algorithm. In order to realize real-time GPP, signals analysis, some key issues are discussed such as the realization of fast wavelet transformation, the selection of CPU chip and the optimization of data movement. Experimenial results show that the DSP based application not only basically meets the real-time requirement of GPP, signals analysis, but also assures the quality of the GPR signals analysis.
基金funded by National Natural Science Foundation of China(61201391)。
文摘Phase-frequency characte ristics of approximate sinusoidal geomagnetic signals can be used fo r projectile roll positioning and other high-precision trajectory correction applications.The sinusoidal geomagnetic signal deforms in the exposed and magnetically contaminated environment.In order to preciously recognize the roll information and effectively separate the noise component from the original geomagnetic sequence,based on the error source analysis,we propose a moving horizon based wavelet de-noising method for the dual-observed geomagnetic signal filtering where the captured rough roll frequency value provides reasonable wavelet decomposition and reconstruction level selection basis for sampled sequence;a moving horizon window guarantees real-time performance and non-cumulative calculation amount.The complete geomagnetic data in full ballistic range and three intercepted paragraphs are used for performance assessment.The positioning performance of the moving horizon wavelet de-noising method is compared with the band-pass filter.The results show that both noise reduction techniques improve the positioning accuracy while the wavelet de-noising method is always better than the band-pass filter.These results suggest that the proposed moving horizon based wavelet de-noising method of the dual-observed geomagnetic signal is more applicable for various launch conditions with better positioning performance.
基金Supported by the China National Science and Technology Major Project(2016ZX05020005-001)
文摘Wavelet forced de-noising algorithm is suitable for denoising of unsteady drilling fluid pulse signal, including baseline drift rectification and two-stage de-noising processing of frame synchronization signal and instruction signal. Two-stage de-noising processing can reduce the impact of baseline drift and determine automatic peak detection threshold range for signal recognition by distinguishing different features of frame synchronization pulse and instruction pulse. Rising and falling edge relative protruding threshold is defined for peak detection in signal recognition, which can make full use of the degree of the signal peak change and detect peaks flexibly with rising and falling edge relative protruding threshold combination. A synchronous decoding method was designed to reduce position uncertainty of the frame synchronization pulse and eliminate the accumulative error of time base drift, which determines the first instruction pulse position according to position of the frame synchronization pulse and decodes subsequent instruction pulse by taking current instruction pulse as new bit synchronization pulse. Special tool software was developed to tune algorithm parameters, which has a decoding success rate of about 95% for the universal coded signals. For the special coded signals with check byte, decoding success rate using the automatic threshold adjustment algorithm is as high as 99%.
文摘In the track irregularity detection, the acceleration signals of the inertial measurement unit (IMU) output which with low frequency components and noise, this paper studied a de-noising algorithm. Based on the criterion of consecutive mean square error, a de-noising method for IMU acceleration signals based on empirical mode decomposition (EMD) was proposed. This method can divide the intrinsic mode functions (IMFs) derived from EMD into signal dominant modes and noise dominant modes, then the modes reflecting the important structures of a signal were combined together to form partially reconstructed de-noised signal. Simulations were conducted for simulated signals and a real IMU acceleration signals using this method. Experimental results indicate that this method can efficiently and adaptively remove noise, and this method can better meet the precision requirement.
基金supported by the NSF of China(Grant Nos.12271050,11871109,11901037)by the CAEP Foundation(Grant No.CX20200027)by the Key Laboratory of Computational Physics Foundation(Grant No.6142A05210502).
文摘This paper considers a corrupted compressed sensing problem and is devoted to recover signals that are approximately sparse in some general dictionary but corrupted by a combination of interference having a sparse representation in a second general dictionary and measurement noise.We provide new restricted isometry property(RIP)analysis to achieve stable recovery of sparsely corrupted signals through Justice Pursuit De-Noising(JPDN)with an additional parameter.Our main tool is to adapt a crucial sparse decomposition technique to the analysis of the Justice Pursuit method.The proposed RIP condition improves the existing representative results.Numerical simulations are provided to verify the reliability of the JPDN model.
基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars of the Ministry of Education (No.2004.176.4)the Natural Science of Foundation Shandong Province (No.Z2004G01).
文摘Wavelet de-noising has been well known as an important method of signal de-noising. Recently,most of the research efforts about wavelet de-noising focus on how to select the threshold,where Donoho method is applied widely. Compared with traditional 2-band wavelet,3-band wavelet has advantages in many aspects. According to this theory,an adaptive signal de-noising method in 3-band wavelet domain based on nonparametric adaptive estimation is proposed. The experimental results show that in 3-band wavelet domain,the proposed method represents better characteristics than Donoho method in protecting detail and improving the signal-to-noise ratio of reconstruction signal.
文摘This paper considers the problem of noise cancellation for the magnetic flux leakage (MFL) data obtained from the inspection of oil pipelines. MFL data is contaminated by various sources of noise, and the noise can considerably reduce the detectability of flaw signals in MFL data. This paper presents a new de-noising approach for removing the system noise contained in the MFL data by using the coefficients de-noising with wavelet transform. Experimental results are presented to demonstrate the advantages of this de-noising approach over the conventional wavelet de-noising method.
基金The authors would like to thank the Universiti Teknologi Malaysia(UTM)and Ministry of Higher Education(MOHE)Malaysia for supporting this work.
文摘Sound waves propagate well underwater making it useful for target locating and communication.Underwater acoustic noise(UWAN)affects the reliability in applications where the noise comes from multiple sources.In this paper,a novel signal de-noising technique is proposed using S-transform.From the time-frequency representation,de-noising is performed using soft thresholding with universal threshold estimation which is then reconstructed.The UWAN used for the validation is sea truth data collected at Desaru beach on the eastern shore of Johor in Malaysia with the use of broadband hydrophones.The comparison is made with the more conventionally used wavelet transform de-noising method.Two types of signals are evaluated:fixed frequency signals and time-varying signals.The results demonstrate that the proposed method shows better signal to noise ratio(SNR)by 4 dB and lower root mean square error(RMSE)by 3 dB achieved at the Nyquist sampling frequency compared to the previously proposed de-noising method like wavelet transform.
文摘In this paper, a different method for de-noising of ECG signals using wavelets is presented. In this strategy, we will try to design the best wavelet for de-nosing. Genetic algorithm tests wide range of quadrature filter banks and the best of them will be chosen that minimize the Signal-to-Noise Ratio (SNR). Furthermore, the wavelet function and scaling function related to these filters are reported as the best wavelet for de-noising. Simulation results for de-noising of a noisy ECG signal show that using obtained wavelet by proposed method improves the SNR of about 2.5 dB.
文摘提出了一种基于声发射(AE)信号对新型点磨削砂轮磨削状态进行实时监测方法.建立了表面粗糙度与AE信号的对应关系,为监测磨削加工表面粗糙度提供了条件.采用单因素实验研究了各参数对AE信号RMS值的影响规律,结果进一步证明了AE信号与表面粗糙度的对应关系.对比分析了砂轮不同磨损状况下的AE信号,依据此信号可对磨削状态进行实时监测.为了区分声发射源性质的异同,对磨削过程中的AE信号进行了频谱分析,砂轮发生磨损时,AE信号在45~65 k Hz,80~90 k Hz,100~110 k Hz频段的能量升高显著,并且在15 k Hz附近出现了很高的尖峰,为监测磨削状态提供了一种可行且有效的方法.