For a single-relay amplify-and-forward (AF) non-cooperative system,an optimal power proportionbetween source and relay is considered.Aiming to minimize end-to-end bit error rate (BER) and maximizeattainable rate,both ...For a single-relay amplify-and-forward (AF) non-cooperative system,an optimal power proportionbetween source and relay is considered.Aiming to minimize end-to-end bit error rate (BER) and maximizeattainable rate,both large-scale path loss and small-scale Rayleigh fading are taken into account.Aclosed form expression to allocate power in optimal proportion at source is obtained.Simulation resultsshow that the proposed scheme to distribute power can minimize BER under any channel conditions.展开更多
Non-orthogonal multiple access(NOMA)technique is an expert on channel differences exploiting.In this paper,a dual-hop NOMA-based cooperative relaying network where a best relay is selected as an active node to accompl...Non-orthogonal multiple access(NOMA)technique is an expert on channel differences exploiting.In this paper,a dual-hop NOMA-based cooperative relaying network where a best relay is selected as an active node to accomplish the communication between a source and a destination is discussed.We assume that both decode-and-forward(DF)and amplify-and-forward(AF)protocols are applied to the selected relay.The metrics that ergodic sum-rate and outage probability are investigated,and the closed-form expressions of the latter for DF and AF protocols are derived.Numerical and simulation results are conducted to verify the validity of the theoretical analysis,in which we can see that the NOMA based DF relaying is better than the NOMA based AF relaying and other existing NOMA-based cooperative communication schemes.展开更多
With the low cost and low hardware complex considerations,cooperative systems are a tendency in the future communications.This work considers the secure cooperative communications systems.For a practical situation in ...With the low cost and low hardware complex considerations,cooperative systems are a tendency in the future communications.This work considers the secure cooperative communications systems.For a practical situation in the system,the scenario includes multiple source stations,multiple relay stations,multiple destination stations,and eavesdroppers.To analyze the optimal relay selection in the system,we begin with the performance analysis for a single source station and a single destination station.By applying two cooperative models,the amplify-andforward(AF) mode and decode-and-forward(DF)mode,the secrecy capacity is derived.Then,we apply the derived results to the considered environment to find the optimal relay assignment.By the way,the relay selection can be obtained by the exhaustive search algorithm.However,there are a lot of steps needed if the number of source stations is large.Hence,applying the characters of the cooperative modes in the relay selection,the pre-selection step is proposed with a mathematical derivation.It could be used for the practical situation without a long-time calculation.展开更多
In this paper, we consider the power optimization problem in Orthogonal Frequency Division Multiplexing (OFDM)-based relay-enhanced device-to-device (D2D) communication. In a single cell transmission scenario, dua...In this paper, we consider the power optimization problem in Orthogonal Frequency Division Multiplexing (OFDM)-based relay-enhanced device-to-device (D2D) communication. In a single cell transmission scenario, dual- hop communication is assumed in which each D2D user re-uses the spectrum of just one Cellular User (CU). In this work, we formulate a joint optimization scheme under a Decode-and-Forward (DF) relaying protocol to maximize the sum throughput of D2D and cellular networks via power allocation over different sub-carriers. The problem is thus transformed into a standard convex optimization, subject to individual power constraints at different transmitting nodes. We exploit the duality theory to decompose the problem into several sub-problems and use Karush-Kuhn- Tucker (KKT) conditions to solve each sub-problem. We provide simulation results to validate the performance of our proposed scheme.展开更多
基金Supported by the National High Technology Research and Development Progranmme of China (No. 2009AA01Z246,2009AA01Z211 )
文摘For a single-relay amplify-and-forward (AF) non-cooperative system,an optimal power proportionbetween source and relay is considered.Aiming to minimize end-to-end bit error rate (BER) and maximizeattainable rate,both large-scale path loss and small-scale Rayleigh fading are taken into account.Aclosed form expression to allocate power in optimal proportion at source is obtained.Simulation resultsshow that the proposed scheme to distribute power can minimize BER under any channel conditions.
基金supported in part by the National Natural Science Foundation of China under Grants 61971149,61431005,and 61971198in part by the Natural Science Foundation of Guangdong Province under Grant 2016A030308006+1 种基金in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2019A1515011040in part by the Young Innovative Talents Project of Guangdong Province under Grant 2018GkQNCX118.
文摘Non-orthogonal multiple access(NOMA)technique is an expert on channel differences exploiting.In this paper,a dual-hop NOMA-based cooperative relaying network where a best relay is selected as an active node to accomplish the communication between a source and a destination is discussed.We assume that both decode-and-forward(DF)and amplify-and-forward(AF)protocols are applied to the selected relay.The metrics that ergodic sum-rate and outage probability are investigated,and the closed-form expressions of the latter for DF and AF protocols are derived.Numerical and simulation results are conducted to verify the validity of the theoretical analysis,in which we can see that the NOMA based DF relaying is better than the NOMA based AF relaying and other existing NOMA-based cooperative communication schemes.
文摘With the low cost and low hardware complex considerations,cooperative systems are a tendency in the future communications.This work considers the secure cooperative communications systems.For a practical situation in the system,the scenario includes multiple source stations,multiple relay stations,multiple destination stations,and eavesdroppers.To analyze the optimal relay selection in the system,we begin with the performance analysis for a single source station and a single destination station.By applying two cooperative models,the amplify-andforward(AF) mode and decode-and-forward(DF)mode,the secrecy capacity is derived.Then,we apply the derived results to the considered environment to find the optimal relay assignment.By the way,the relay selection can be obtained by the exhaustive search algorithm.However,there are a lot of steps needed if the number of source stations is large.Hence,applying the characters of the cooperative modes in the relay selection,the pre-selection step is proposed with a mathematical derivation.It could be used for the practical situation without a long-time calculation.
文摘In this paper, we consider the power optimization problem in Orthogonal Frequency Division Multiplexing (OFDM)-based relay-enhanced device-to-device (D2D) communication. In a single cell transmission scenario, dual- hop communication is assumed in which each D2D user re-uses the spectrum of just one Cellular User (CU). In this work, we formulate a joint optimization scheme under a Decode-and-Forward (DF) relaying protocol to maximize the sum throughput of D2D and cellular networks via power allocation over different sub-carriers. The problem is thus transformed into a standard convex optimization, subject to individual power constraints at different transmitting nodes. We exploit the duality theory to decompose the problem into several sub-problems and use Karush-Kuhn- Tucker (KKT) conditions to solve each sub-problem. We provide simulation results to validate the performance of our proposed scheme.