In anchor-free environments,where no devices with known positions are available,the error growth of autonomous underwater vehicle(AUV)localization and target tracking is unbounded due to the lack of references and the...In anchor-free environments,where no devices with known positions are available,the error growth of autonomous underwater vehicle(AUV)localization and target tracking is unbounded due to the lack of references and the accumulated errors in inertial measurements.This paper aims to improve the localization and tracking accuracy by involving current information as extra references.We first integrate current measurements and maps with belief propagation and design a distributed current-aided message-passing scheme that theoretically solves the localization and tracking problems.Based on this scheme,we propose particle-based cooperative localization and target tracking algorithms,named CaCL and CaTT,respectively.In AUV localization,CaCL uses the current measurements to correct the predicted and transmitted position information and alleviates the impact of the accumulated errors in inertial measurements.With target tracking,the current maps are applied in CaTT to modify the position prediction of the target which is calculated through historical estimates.The effectiveness and robustness of the proposed methods are validated through various simulations by comparisons with alternative methods under different trajectories and current conditions.展开更多
Geographic location of nodes is very useful in a sensor network. Previous localization algorithms assume that there exist some anchor nodes in this kind of network, and then other nodes are estimated to create their c...Geographic location of nodes is very useful in a sensor network. Previous localization algorithms assume that there exist some anchor nodes in this kind of network, and then other nodes are estimated to create their coordinates. Once there are not anchors to be deployed, those localization algorithms will be invalidated. Many papers in this field focus on anchor-based solutions. The use of anchors introduces many limitations, since anchors require external equipments such as global position system, cause additional power consumption. A novel positioning algorithm is proposed to use a virtual coordinate system based on a new concept--virtual anchor. It is executed in a distributed fashion according to the connectivity of a node and the measured distances to its neighbors. Both the adjacent member information and the ranging distance result are combined to generate the estimated position of a network, one of which is independently adopted for localization previously. At the position refinement stage the intermediate estimation of a node begins to be evaluated on its reliability for position mutation; thus the positioning optimization process of the whole network is avoided falling into a local optimal solution. Simulation results prove that the algorithm can resolve the distributed localization problem for anchor-free sensor networks, and is superior to previous methods in terms of its positioning capability under a variety of circumstances.展开更多
基金supported in part by the National Natural Science Foundation of China(62203299,61773264,61922058,61803261,61801295)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(SL2020ZD206,SL2020MS010,SL2020MS015)。
文摘In anchor-free environments,where no devices with known positions are available,the error growth of autonomous underwater vehicle(AUV)localization and target tracking is unbounded due to the lack of references and the accumulated errors in inertial measurements.This paper aims to improve the localization and tracking accuracy by involving current information as extra references.We first integrate current measurements and maps with belief propagation and design a distributed current-aided message-passing scheme that theoretically solves the localization and tracking problems.Based on this scheme,we propose particle-based cooperative localization and target tracking algorithms,named CaCL and CaTT,respectively.In AUV localization,CaCL uses the current measurements to correct the predicted and transmitted position information and alleviates the impact of the accumulated errors in inertial measurements.With target tracking,the current maps are applied in CaTT to modify the position prediction of the target which is calculated through historical estimates.The effectiveness and robustness of the proposed methods are validated through various simulations by comparisons with alternative methods under different trajectories and current conditions.
基金the National Natural Science Foundation of China (60673054, 60773129)theExcellent Youth Science and Technology Foundation of Anhui Province of China.
文摘Geographic location of nodes is very useful in a sensor network. Previous localization algorithms assume that there exist some anchor nodes in this kind of network, and then other nodes are estimated to create their coordinates. Once there are not anchors to be deployed, those localization algorithms will be invalidated. Many papers in this field focus on anchor-based solutions. The use of anchors introduces many limitations, since anchors require external equipments such as global position system, cause additional power consumption. A novel positioning algorithm is proposed to use a virtual coordinate system based on a new concept--virtual anchor. It is executed in a distributed fashion according to the connectivity of a node and the measured distances to its neighbors. Both the adjacent member information and the ranging distance result are combined to generate the estimated position of a network, one of which is independently adopted for localization previously. At the position refinement stage the intermediate estimation of a node begins to be evaluated on its reliability for position mutation; thus the positioning optimization process of the whole network is avoided falling into a local optimal solution. Simulation results prove that the algorithm can resolve the distributed localization problem for anchor-free sensor networks, and is superior to previous methods in terms of its positioning capability under a variety of circumstances.