The EU’s Artificial Intelligence Act(AI Act)imposes requirements for the privacy compliance of AI systems.AI systems must comply with privacy laws such as the GDPR when providing services.These laws provide users wit...The EU’s Artificial Intelligence Act(AI Act)imposes requirements for the privacy compliance of AI systems.AI systems must comply with privacy laws such as the GDPR when providing services.These laws provide users with the right to issue a Data Subject Access Request(DSAR).Responding to such requests requires database administrators to identify information related to an individual accurately.However,manual compliance poses significant challenges and is error-prone.Database administrators need to write queries through time-consuming labor.The demand for large amounts of data by AI systems has driven the development of NoSQL databases.Due to the flexible schema of NoSQL databases,identifying personal information becomes even more challenging.This paper develops an automated tool to identify personal information that can help organizations respond to DSAR.Our tool employs a combination of various technologies,including schema extraction of NoSQL databases and relationship identification from query logs.We describe the algorithm used by our tool,detailing how it discovers and extracts implicit relationships from NoSQL databases and generates relationship graphs to help developers accurately identify personal data.We evaluate our tool on three datasets,covering different database designs,achieving an F1 score of 0.77 to 1.Experimental results demonstrate that our tool successfully identifies information relevant to the data subject.Our tool reduces manual effort and simplifies GDPR compliance,showing practical application value in enhancing the privacy performance of NOSQL databases and AI systems.展开更多
The risk of bias is widely noticed in the entire process of generative artificial intelligence(generative AI)systems.To protect the rights of the public and improve the effectiveness of AI regulations,feasible measure...The risk of bias is widely noticed in the entire process of generative artificial intelligence(generative AI)systems.To protect the rights of the public and improve the effectiveness of AI regulations,feasible measures to address the bias problem in the context of large data should be proposed as soon as possible.Since bias originates in every part and various aspects of AI product lifecycles,laws and technical measures should consider each of these layers and take different causes of bias into account,from data training,modeling,and application design.The Interim Measures for the Administration of Generative AI Service(the Interim Measures),formulated by the Office of the Central Cyberspace Affairs Commission(CAC)and other departments have taken the initiatives to govern AI.However,it lacks specific details on issues such as how to prevent the risk of bias and reduce the effect of bias in decision-making.The Interim Measures also fail to take causes of bias into account,and several principles must be further interpreted.Meanwhile,regulations on generative AI at the global level are still in their early stages.By forming a governance framework,this paper could provide the community with useful experiences and play a leading role.The framework includes at least three parts:first,determining the realm of governance and unifying related concepts;second,developing measures for different layers to identify the causes and specific aspects of bias;third,identifying parties with the skills to take responsibility for detecting bias intrusions and proposing a program for the allocation of liabilities among the large-scale platform developers.展开更多
<div style="text-align:justify;"> In distributed AI system, the models trained on data from potentially unreliable sources can be attacked by manipulating the training data distribution by inserting ca...<div style="text-align:justify;"> In distributed AI system, the models trained on data from potentially unreliable sources can be attacked by manipulating the training data distribution by inserting carefully crafted samples into the training set, which is known as Data Poisoning. Poisoning will to change the model behavior and reduce model performance. This paper proposes an algorithm that gives an improvement of both efficiency and security for data poisoning in a distributed AI system. The past methods of active defense often have a large number of invalid checks, which slows down the operation efficiency of the whole system. While passive defense also has problems of missing data and slow detection of error source. The proposed algorithm establishes the suspect hypothesis level to test and extend the verification of data packets and estimates the risk of terminal data. It can enhance the health degree of a distributed AI system by preventing the occurrence of poisoning attack and ensuring the efficiency and safety of the system operation. </div>展开更多
Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professio...Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professional sports analytics realm but also the academic AI research community. AI brings gamechanging approaches for soccer analytics where soccer has been a typical benchmark for AI research. The combination has been an emerging topic. In this paper, soccer match analytics are taken as a complete observation-orientation-decision-action(OODA) loop.In addition, as in AI frameworks such as that for reinforcement learning, interacting with a virtual environment enables an evolving model. Therefore, both soccer analytics in the real world and virtual domains are discussed. With the intersection of the OODA loop and the real-virtual domains, available soccer data, including event and tracking data, and diverse orientation and decisionmaking models for both real-world and virtual soccer matches are comprehensively reviewed. Finally, some promising directions in this interdisciplinary area are pointed out. It is claimed that paradigms for both professional sports analytics and AI research could be combined. Moreover, it is quite promising to bridge the gap between the real and virtual domains for soccer match analysis and decision-making.展开更多
COVID-19 pandemic restrictions limited all social activities to curtail the spread of the virus.The foremost and most prime sector among those affected were schools,colleges,and universities.The education system of en...COVID-19 pandemic restrictions limited all social activities to curtail the spread of the virus.The foremost and most prime sector among those affected were schools,colleges,and universities.The education system of entire nations had shifted to online education during this time.Many shortcomings of Learning Management Systems(LMSs)were detected to support education in an online mode that spawned the research in Artificial Intelligence(AI)based tools that are being developed by the research community to improve the effectiveness of LMSs.This paper presents a detailed survey of the different enhancements to LMSs,which are led by key advances in the area of AI to enhance the real-time and non-real-time user experience.The AI-based enhancements proposed to the LMSs start from the Application layer and Presentation layer in the form of flipped classroom models for the efficient learning environment and appropriately designed UI/UX for efficient utilization of LMS utilities and resources,including AI-based chatbots.Session layer enhancements are also required,such as AI-based online proctoring and user authentication using Biometrics.These extend to the Transport layer to support real-time and rate adaptive encrypted video transmission for user security/privacy and satisfactory working of AI-algorithms.It also needs the support of the Networking layer for IP-based geolocation features,the Virtual Private Network(VPN)feature,and the support of Software-Defined Networks(SDN)for optimum Quality of Service(QoS).Finally,in addition to these,non-real-time user experience is enhanced by other AI-based enhancements such as Plagiarism detection algorithms and Data Analytics.展开更多
The integration of wearable technologies and artificial intelligence (AI) has revolutionized healthcare, enabling advanced personal health monitoring systems. This article explores the transformative impact of wearabl...The integration of wearable technologies and artificial intelligence (AI) has revolutionized healthcare, enabling advanced personal health monitoring systems. This article explores the transformative impact of wearable technologies and AI on healthcare, highlighting the development and theoretical application of the Integrated Personal Health Monitoring System (IPHMS). By integrating data from various wearable devices, such as smartphones, Apple Watches, and Oura Rings, the IPHMS framework aims to revolutionize personal health monitoring through real-time alerts, comprehensive tracking, and personalized insights. Despite its potential, the practical implementation faces challenges, including data privacy, system interoperability, and scalability. The evolution of healthcare technology from traditional methods to AI-enhanced wearables underscores a significant advancement towards personalized care, necessitating further research and innovation to address existing limitations and fully realize the benefits of such integrated health monitoring systems.展开更多
基金supported by the National Natural Science Foundation of China(No.62302242)the China Postdoctoral Science Foundation(No.2023M731802).
文摘The EU’s Artificial Intelligence Act(AI Act)imposes requirements for the privacy compliance of AI systems.AI systems must comply with privacy laws such as the GDPR when providing services.These laws provide users with the right to issue a Data Subject Access Request(DSAR).Responding to such requests requires database administrators to identify information related to an individual accurately.However,manual compliance poses significant challenges and is error-prone.Database administrators need to write queries through time-consuming labor.The demand for large amounts of data by AI systems has driven the development of NoSQL databases.Due to the flexible schema of NoSQL databases,identifying personal information becomes even more challenging.This paper develops an automated tool to identify personal information that can help organizations respond to DSAR.Our tool employs a combination of various technologies,including schema extraction of NoSQL databases and relationship identification from query logs.We describe the algorithm used by our tool,detailing how it discovers and extracts implicit relationships from NoSQL databases and generates relationship graphs to help developers accurately identify personal data.We evaluate our tool on three datasets,covering different database designs,achieving an F1 score of 0.77 to 1.Experimental results demonstrate that our tool successfully identifies information relevant to the data subject.Our tool reduces manual effort and simplifies GDPR compliance,showing practical application value in enhancing the privacy performance of NOSQL databases and AI systems.
文摘The risk of bias is widely noticed in the entire process of generative artificial intelligence(generative AI)systems.To protect the rights of the public and improve the effectiveness of AI regulations,feasible measures to address the bias problem in the context of large data should be proposed as soon as possible.Since bias originates in every part and various aspects of AI product lifecycles,laws and technical measures should consider each of these layers and take different causes of bias into account,from data training,modeling,and application design.The Interim Measures for the Administration of Generative AI Service(the Interim Measures),formulated by the Office of the Central Cyberspace Affairs Commission(CAC)and other departments have taken the initiatives to govern AI.However,it lacks specific details on issues such as how to prevent the risk of bias and reduce the effect of bias in decision-making.The Interim Measures also fail to take causes of bias into account,and several principles must be further interpreted.Meanwhile,regulations on generative AI at the global level are still in their early stages.By forming a governance framework,this paper could provide the community with useful experiences and play a leading role.The framework includes at least three parts:first,determining the realm of governance and unifying related concepts;second,developing measures for different layers to identify the causes and specific aspects of bias;third,identifying parties with the skills to take responsibility for detecting bias intrusions and proposing a program for the allocation of liabilities among the large-scale platform developers.
文摘<div style="text-align:justify;"> In distributed AI system, the models trained on data from potentially unreliable sources can be attacked by manipulating the training data distribution by inserting carefully crafted samples into the training set, which is known as Data Poisoning. Poisoning will to change the model behavior and reduce model performance. This paper proposes an algorithm that gives an improvement of both efficiency and security for data poisoning in a distributed AI system. The past methods of active defense often have a large number of invalid checks, which slows down the operation efficiency of the whole system. While passive defense also has problems of missing data and slow detection of error source. The proposed algorithm establishes the suspect hypothesis level to test and extend the verification of data packets and estimates the risk of terminal data. It can enhance the health degree of a distributed AI system by preventing the occurrence of poisoning attack and ensuring the efficiency and safety of the system operation. </div>
基金supported by the National Key Research,Development Program of China (2020AAA0103404)the Beijing Nova Program (20220484077)the National Natural Science Foundation of China (62073323)。
文摘Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professional sports analytics realm but also the academic AI research community. AI brings gamechanging approaches for soccer analytics where soccer has been a typical benchmark for AI research. The combination has been an emerging topic. In this paper, soccer match analytics are taken as a complete observation-orientation-decision-action(OODA) loop.In addition, as in AI frameworks such as that for reinforcement learning, interacting with a virtual environment enables an evolving model. Therefore, both soccer analytics in the real world and virtual domains are discussed. With the intersection of the OODA loop and the real-virtual domains, available soccer data, including event and tracking data, and diverse orientation and decisionmaking models for both real-world and virtual soccer matches are comprehensively reviewed. Finally, some promising directions in this interdisciplinary area are pointed out. It is claimed that paradigms for both professional sports analytics and AI research could be combined. Moreover, it is quite promising to bridge the gap between the real and virtual domains for soccer match analysis and decision-making.
文摘COVID-19 pandemic restrictions limited all social activities to curtail the spread of the virus.The foremost and most prime sector among those affected were schools,colleges,and universities.The education system of entire nations had shifted to online education during this time.Many shortcomings of Learning Management Systems(LMSs)were detected to support education in an online mode that spawned the research in Artificial Intelligence(AI)based tools that are being developed by the research community to improve the effectiveness of LMSs.This paper presents a detailed survey of the different enhancements to LMSs,which are led by key advances in the area of AI to enhance the real-time and non-real-time user experience.The AI-based enhancements proposed to the LMSs start from the Application layer and Presentation layer in the form of flipped classroom models for the efficient learning environment and appropriately designed UI/UX for efficient utilization of LMS utilities and resources,including AI-based chatbots.Session layer enhancements are also required,such as AI-based online proctoring and user authentication using Biometrics.These extend to the Transport layer to support real-time and rate adaptive encrypted video transmission for user security/privacy and satisfactory working of AI-algorithms.It also needs the support of the Networking layer for IP-based geolocation features,the Virtual Private Network(VPN)feature,and the support of Software-Defined Networks(SDN)for optimum Quality of Service(QoS).Finally,in addition to these,non-real-time user experience is enhanced by other AI-based enhancements such as Plagiarism detection algorithms and Data Analytics.
文摘The integration of wearable technologies and artificial intelligence (AI) has revolutionized healthcare, enabling advanced personal health monitoring systems. This article explores the transformative impact of wearable technologies and AI on healthcare, highlighting the development and theoretical application of the Integrated Personal Health Monitoring System (IPHMS). By integrating data from various wearable devices, such as smartphones, Apple Watches, and Oura Rings, the IPHMS framework aims to revolutionize personal health monitoring through real-time alerts, comprehensive tracking, and personalized insights. Despite its potential, the practical implementation faces challenges, including data privacy, system interoperability, and scalability. The evolution of healthcare technology from traditional methods to AI-enhanced wearables underscores a significant advancement towards personalized care, necessitating further research and innovation to address existing limitations and fully realize the benefits of such integrated health monitoring systems.