Iron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework,cost‐effectiveness,and high energy density.However,the understanding of the crystal structure is scarce and on...Iron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework,cost‐effectiveness,and high energy density.However,the understanding of the crystal structure is scarce and only a limited candidates have been reported so far.In this work,we found for the first time that a continuous solid solution,Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2)(0≤α≤1,could be obtained by mutual substitution of cations at center‐symmetric Na3 and Na4 sites while keeping the crystal building blocks of anionic P_(2)O_(7) unchanged.In particular,a novel off‐stoichiometric Na_(3)Fe(2.5)(P_(2)O_(7))_(2)is thus proposed,and its structure,energy storage mechanism,and electrochemical performance are extensively investigated to unveil the structure–function relationship.The as‐prepared off‐stoichiometric electrode delivers appealing performance with a reversible discharge capacity of 83 mAh g^(−1),a working voltage of 2.9 V(vs.Na^(+)/Na),the retention of 89.2%of the initial capacity after 500 cycles,and enhanced rate capability of 51 mAh g^(−1)at a current density of 1600 mA g^(−1).This research shows that sodium ferric pyrophosphate could form extended solid solution composition and promising phase is concealed in the range of Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2),offering more chances for exploration of new cathode materials for the construction of high‐performance SIBs.展开更多
Physical vapor deposition(PVD)can be used to produce high-quality Gd_(2)O_(3)-doped CeO2(GDC)films.Among various PVD methods,reactive sputtering provides unique benefits,such as high deposition rates and easy upscalin...Physical vapor deposition(PVD)can be used to produce high-quality Gd_(2)O_(3)-doped CeO2(GDC)films.Among various PVD methods,reactive sputtering provides unique benefits,such as high deposition rates and easy upscaling for industrial applications.GDC thin films were successfully fabricated through reactive sputtering using a Gd_(0.2)Ce_(0.8)(at%)metallic target,and their application in solid oxide fuel cells,such as buffer layers between yttria-stabilized zirconia(YSZ)/La0.6Sr0.4Co0.2Fe0.8O_(3−δ)and as sublayers in the steel/coating system,was evaluated.First,the direct current(DC)reactive-sputtering behavior of the GdCe metallic target was determined.Then,the GDC films were deposited on NiO-YSZ/YSZ half-cells to investigate the influence of oxygen flow rate on the quality of annealed GDC films.The results demonstrated that reactive sputtering can be used to prepare thin and dense GDC buffer layers without high-temperature sintering.Furthermore,the cells with a sputtered GDC buffer layer showed better electrochemical performance than those with a screen-printed GDC buffer layer.In addition,the insertion of a GDC sublayer between the SUS441 interconnects and the Mn-Co spinel coatings contributed to the reduction of the oxidation rate for SUS441 at operating temperatures,according to the area-specific resistance tests.展开更多
To understand the effect of the doping amount of Cu^2+ on the structure and reactivity of SnO2 in NOx-SCR with NH3, a series of Sn-Cu-O binary oxide catalysts with different Sn/Cu ratios have been prepared and thoroug...To understand the effect of the doping amount of Cu^2+ on the structure and reactivity of SnO2 in NOx-SCR with NH3, a series of Sn-Cu-O binary oxide catalysts with different Sn/Cu ratios have been prepared and thoroughly characterized. Using the XRD extrapolation method, the SnO2 lattice capacity for Cu^2+ cations is determined at 0.10 g Cu O per g of SnO2, equaling a Sn/Cu molar ratio of 84/16. Therefore, in a tetragonal rutile SnO2 lattice, only a maximum of 16% of the Sn4+ cations can be replaced by Cu^2+ to form a stable solid solution structure. If the Cu content is higher, Cu O will form on the catalyst surface, which has a negative effect on the reaction performance. For samples in a pure solid solution phase, the number of surface defects increase with increasing Cu content until it reaches the lattice capacity, as confirmed by Raman spectroscopy. As a result, the amounts of both active oxygen species and acidic sites on the surface, which critically determine the reaction performance, also increase and reach the maximum level for the catalyst with a Cu content close to the lattice capacity. A distinct lattice capacity threshold effect on the structure and reactivity of Sn-Cu binary oxide catalysts has been observed. A Sn-Cu catalyst with the best reaction performance can be obtained by doping the SnO2 matrix with the lattice capacity amount of Cu^2+.展开更多
By X-ray powder diffraction technique and oxygen content analysis, a solid solution Sm1+xBa2-xCu3Oy has been determined in the range 0≤x≤0.4. When x<0.25. the Sm1+xBa2-xCu3Oy presents orthorhombic symmetry, and ...By X-ray powder diffraction technique and oxygen content analysis, a solid solution Sm1+xBa2-xCu3Oy has been determined in the range 0≤x≤0.4. When x<0.25. the Sm1+xBa2-xCu3Oy presents orthorhombic symmetry, and the orthorhombic-tetragonaJ transition ocCurs at x = 0.25. With the increase of x, TC decreases and finally breaks. The correlation between ox ygen content and phase structure at different quench temperatures related to Sm Ba2Cu3Oy has been investigated as well展开更多
Ion mobility in solid solutions of the fluorite structure 50Pb2–30BiF3–20KF (I) and 50Pb2–30BiF3–20NaF (II) was studied by NMR method. Analysis of 19F, 23Na NMR spectra made it possible to reveal the character of ...Ion mobility in solid solutions of the fluorite structure 50Pb2–30BiF3–20KF (I) and 50Pb2–30BiF3–20NaF (II) was studied by NMR method. Analysis of 19F, 23Na NMR spectra made it possible to reveal the character of ion motions in the fluoride and sodium sublattices with temperature variation, to determine the types and temperature ranges in which they took place. It was found that the dominant form of ionic mobility in the samples I and II above 380 K was the diffusion of fluoride and sodium ions. According to preliminary results of electro-physical studies, the conductivity reached values of ~ 2×10–2 – 10–3 S/cm above 500 K. The solid solutions I and II can be recommended as a basis for use in the development of new functional materials.展开更多
Ni-Y2O3 nanocomposite powder with uniform distribution of fine oxide particles in the metal matrix was successfully fabricated via solution combustion process followed by hydrogen reduction. The combustion behavior wa...Ni-Y2O3 nanocomposite powder with uniform distribution of fine oxide particles in the metal matrix was successfully fabricated via solution combustion process followed by hydrogen reduction. The combustion behavior was investigated by DTA-TG analysis. The influence of urea to nickel nitrate(U/Ni) ratio on the combustion behavior and morphology evolution of the combusted powder was investigated. The morphological characteristics and phase transformation of the combusted powder and the reduced powder were characterized by FESEM, TEM and XRD. The HRTEM image of Ni-Y2O3 nanocomposite powder indicated that Y2O3 particles with average particle size of about 10 nm dispersed uniformly in the nickel matrix.展开更多
The three way catalysts (TWCs) promoters (Ce Zr)O 2, (Pr Ce Zr)O 2 and (Pr Zr)O 2 were prepared by sol gel like method. They were characterized by XRD, EXAFS and BET surface area determination. The reduction ...The three way catalysts (TWCs) promoters (Ce Zr)O 2, (Pr Ce Zr)O 2 and (Pr Zr)O 2 were prepared by sol gel like method. They were characterized by XRD, EXAFS and BET surface area determination. The reduction features of the promoters were measured by temperature programmed reduction (TPR) of H 2 to access the potential for the promoters containing praseodymia as oxygen storage component in three way catalyst. The (Pr Zr)O 2 cubic solid solution is formed at high temperature up to 800 ℃, which makes it more reducible than the (Ce Zr)O 2 solid solution. For the (Pr Ce Zr)O 2 samples, the ternary solid solution plays an important role in the reduction process. The performance of the three way catalysts with fully formulated Pt, Pd and Rh is proceeded by using both light off temperature under a stoichiometric gas composition and the conversion of CO, C 3H 6 and NO under changing air/fuel ratio at a constant reaction temperature 400 ℃ . The results indicate that a small amount of praseodymia doping into (Ce Zr)O 2 favors the light off temperature of C 3H 6 and NO, and all the catalysts containing praseodymia obviously exhibits enhanced width of S value for NO conversion at lean region ( S ≥1.00).展开更多
Agglomeration-free nanosized ZrO2-HfO2-Y2O3-Sc2O3 composite powders were successfully synthesized by Sol-Gel technique in heated aqueous solution of alcohol, using analytically pure ZrOCl2 · 8H2O, HfOCl2·8H2...Agglomeration-free nanosized ZrO2-HfO2-Y2O3-Sc2O3 composite powders were successfully synthesized by Sol-Gel technique in heated aqueous solution of alcohol, using analytically pure ZrOCl2 · 8H2O, HfOCl2·8H2O, Y(NO3)3·6H2O, and Sc2O3 as raw materials. The effect of synthesis condition on the size and dispersity of the composite powders was investigated by means of XRD, TEM, and TG-DSC techniques. The results showed that well-dispersed predecessor of ZrO2-HfO2-Y2O3-Sc2O3 composite nanopowders could be obtained. The optional condition : PEG6000 as dispersant was 1%, alcohol/H2O ratio was 5/1, metallic ion concentration in whole solution was 0.5 mol·L^-1 and the pH value of the solution was 12. After calcined at 620 ℃, the powder obtained was in uniform cubic structure, and its average particle size was about 13 nm, which was good for producing nanocrystalline solid electrolyte.展开更多
In this paper we have systematically studied V-L equilibrium in ternary aqueous solutions containingvolatile electrolytes by introducing a ternary interaction term into Edwards generalized molecular thermody-namic mod...In this paper we have systematically studied V-L equilibrium in ternary aqueous solutions containingvolatile electrolytes by introducing a ternary interaction term into Edwards generalized molecular thermody-namic model and optimizing several adjustable parameters.The program PARA9 with flexible functions ofdoing a series of calculations has been developed and carried out on a TQ-16 computer.It can be usedeither for directly calculating the V-L equilibrium or for optimizing the adjustable parameters.For the sys-toms(NH3-CO3-H2O3,NH3-H2S-H2O and NH3-SO2-H2O)satisfactory results have been obtained withrelative mean deviation of 5-10%.Besides,several sets of adjustable parameters and valuable information ofactivity coefficients,equilibrium concentrations of ions and molecules in solutions are obtained.展开更多
For the pursuit of high energy supercapacitors,the development of high performance pseudocapacitance or battery-type negative electrode material is urgently needed to make up for the capacity shortage of commercial el...For the pursuit of high energy supercapacitors,the development of high performance pseudocapacitance or battery-type negative electrode material is urgently needed to make up for the capacity shortage of commercial electric double layer capacitor(EDLC)type materials.Herein,a porous and defect-rich Fe_(x)Bi_(2-x)S_(3) solid solution structure is firstly constructed by employing Fe-doped Bi_(2)O_(2)CO_(3) porous nanosheets as a precursor,which presents dramatically increased energy storage performance than Bi_(2)S_(3) and FeS_(2) phase.For the optimized Fe_(x)Bi_(2-x)S_(3) solid solution(FeBiS-60%),the Fe solute is free and random dispersed in Bi_(2)S_(3) framework,which can effectively modulate the electronic structure of Bi element and introduce rich-defect due to the existence of Fe(II).Meanwhile,the FeBiS-60%,constructed by pore nanosheets that are assembled by self-supported basic nanorod units,presents rich mesoporous channels for fast mass transfer and abundant active sites for promoting capacity performance.Therefore,a high capacitance of 832.8 F·g^(-1) at a current density of 1 A·g^(-1) is achieved by the FeBiS-60%electrode.Furthermore,a fabricated Ni3S_(2)@Co_(3)S_(4)(NCS)//FeBiS-60%hybrid supercapacitor device delivers an outstanding energy density of 85.33 Wh·kg^(-1) at the power density of 0.799 kW·kg^(-1),and ultra-long lifespan of remaining 86.7%initial capacitance after 8700 cycles.展开更多
Due to the negligible non-perturbation effect in the low-energy region, quantum chromodynamics (QCD) is limited to be applied to hadron problems in particle physics. However, QED has mature non-perturbation models w...Due to the negligible non-perturbation effect in the low-energy region, quantum chromodynamics (QCD) is limited to be applied to hadron problems in particle physics. However, QED has mature non-perturbation models which can be applied to Fermi acting-energy between quark and gluon. This paper applies quantum electrodynamics in 2 + 1 dimensions (QED3) to the Fermi condensation problems. First, the Dyson-Schwinger equation which the fermions satisfy is constructed, and then the Fermi energy gap is solved. Theoretical calculations show that within the chirality limit, there exist three solutions for the energy gap; beyond the chirality limit, there are two solutions; all these solutions correspond to different fermion condensates. It can be concluded that the fermion condensates within the chirality limit can be used to analyze the existence of antiferromagnetic, pseudogap, and superconducting phases, and two fermion condensates are discovered beyond the chirality limit.展开更多
SO4^2- / TiO2-La2O3, a novel solid superacid, was prepared and its catalytic activities at different synthetic conditions are discussed with esterification of n-butanoic acid and n-butyl alcohol as probing reaction. T...SO4^2- / TiO2-La2O3, a novel solid superacid, was prepared and its catalytic activities at different synthetic conditions are discussed with esterification of n-butanoic acid and n-butyl alcohol as probing reaction. The optimum conditions have also been found, mole ratio of n(La^3+):n(Ti^4+) is 1:34, the soaked consistency of H2SO4 is 0.8 tool/L, the soaked time of HESO4 is 24 h, the calcining temperature is 480 ℃, the calcining time is 3 h. Then it was applied in the catalytic synthesis often important ketals and acetals as catalyst and revealed high catalytic activity. Under these conditions on which the molar ratio of aldehyde/ketone to glycol is l: 1.5, the mass ratio of the catalyst used in the reactants is 0.5%, and the reaction time is 1.0 h, the yields of ketals and acetals can reach 41.4%-95.8%.展开更多
(Bi2O3)0.73(Y2O3)0.27 fine powders prepared by wet chemical precipitation method were cold isostatically pressed to form solid electrolyte tubes, and sintered at 900 ℃ for 10 h in the air. Their pumping oxygen ch...(Bi2O3)0.73(Y2O3)0.27 fine powders prepared by wet chemical precipitation method were cold isostatically pressed to form solid electrolyte tubes, and sintered at 900 ℃ for 10 h in the air. Their pumping oxygen characteristics in non-dehydrated Ar gas were investigated, where a ZrO2 (Y2O3 stabilized) oxygen sensor was used to measure the oxygen partial pressure Po2. The results showed that the Po2 value reached magnitudes of 1×10^-2-1×10^-10 Pa at the applied pumping oxygen voltage of 0.5 V, 1×10^-37-1×10^-27 Pa at 1.0 V and 1×10^-53-1×10^47 Pa at 2.0 V within the temperature range from 550 to 650 ℃. Moreover, no cracks were found in the tested solid electrolyte tubes. Thus, the Bi2O3-Y2O3 system might be used in solid electrolyte oxygen pump for purifying gases.展开更多
Al2O3 short fiber reinforced La-bearing Al-5%Cu alloy was fabricated by squeeze casting, and the solidified structure and the solute segregation during alloy solidification were studied. The results indicated that La ...Al2O3 short fiber reinforced La-bearing Al-5%Cu alloy was fabricated by squeeze casting, and the solidified structure and the solute segregation during alloy solidification were studied. The results indicated that La has been enriched near the interface which is favorable to improve the wettability between the fiber and At alloy, but the RE-rich phase was not formed at the interface. At the end of the solidification of the composites, the change of the solute in the surplus liquid phase results in the type of matrix alloy being changed because of the selective crystallization, and the segregation at the interface is finally formed. There is no special influence by La on the Cu segregation in the matrix alloy.展开更多
基金National Natural Science Foundation of China,Grant/Award Numbers:21972108,U20A20249,U22A20438Changzhou Science and Technology Bureau,Grant/Award Number:CM20223017Innovation and Technology Commission(ITC)of Hong Kong,The Innovation&Technology Fund(ITF)with Project No.ITS/126/21。
文摘Iron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework,cost‐effectiveness,and high energy density.However,the understanding of the crystal structure is scarce and only a limited candidates have been reported so far.In this work,we found for the first time that a continuous solid solution,Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2)(0≤α≤1,could be obtained by mutual substitution of cations at center‐symmetric Na3 and Na4 sites while keeping the crystal building blocks of anionic P_(2)O_(7) unchanged.In particular,a novel off‐stoichiometric Na_(3)Fe(2.5)(P_(2)O_(7))_(2)is thus proposed,and its structure,energy storage mechanism,and electrochemical performance are extensively investigated to unveil the structure–function relationship.The as‐prepared off‐stoichiometric electrode delivers appealing performance with a reversible discharge capacity of 83 mAh g^(−1),a working voltage of 2.9 V(vs.Na^(+)/Na),the retention of 89.2%of the initial capacity after 500 cycles,and enhanced rate capability of 51 mAh g^(−1)at a current density of 1600 mA g^(−1).This research shows that sodium ferric pyrophosphate could form extended solid solution composition and promising phase is concealed in the range of Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2),offering more chances for exploration of new cathode materials for the construction of high‐performance SIBs.
基金financially supported by the National Key R&D Program of China (No. 2018YFB1502203-1)the Guangdong Basic and Applied Basic Research Foundation (No. 2021B1515120087)the Stable Supporting Fund of Shenzhen, China (No. GXWD20201230155427003-202007 28114835006)
文摘Physical vapor deposition(PVD)can be used to produce high-quality Gd_(2)O_(3)-doped CeO2(GDC)films.Among various PVD methods,reactive sputtering provides unique benefits,such as high deposition rates and easy upscaling for industrial applications.GDC thin films were successfully fabricated through reactive sputtering using a Gd_(0.2)Ce_(0.8)(at%)metallic target,and their application in solid oxide fuel cells,such as buffer layers between yttria-stabilized zirconia(YSZ)/La0.6Sr0.4Co0.2Fe0.8O_(3−δ)and as sublayers in the steel/coating system,was evaluated.First,the direct current(DC)reactive-sputtering behavior of the GdCe metallic target was determined.Then,the GDC films were deposited on NiO-YSZ/YSZ half-cells to investigate the influence of oxygen flow rate on the quality of annealed GDC films.The results demonstrated that reactive sputtering can be used to prepare thin and dense GDC buffer layers without high-temperature sintering.Furthermore,the cells with a sputtered GDC buffer layer showed better electrochemical performance than those with a screen-printed GDC buffer layer.In addition,the insertion of a GDC sublayer between the SUS441 interconnects and the Mn-Co spinel coatings contributed to the reduction of the oxidation rate for SUS441 at operating temperatures,according to the area-specific resistance tests.
文摘To understand the effect of the doping amount of Cu^2+ on the structure and reactivity of SnO2 in NOx-SCR with NH3, a series of Sn-Cu-O binary oxide catalysts with different Sn/Cu ratios have been prepared and thoroughly characterized. Using the XRD extrapolation method, the SnO2 lattice capacity for Cu^2+ cations is determined at 0.10 g Cu O per g of SnO2, equaling a Sn/Cu molar ratio of 84/16. Therefore, in a tetragonal rutile SnO2 lattice, only a maximum of 16% of the Sn4+ cations can be replaced by Cu^2+ to form a stable solid solution structure. If the Cu content is higher, Cu O will form on the catalyst surface, which has a negative effect on the reaction performance. For samples in a pure solid solution phase, the number of surface defects increase with increasing Cu content until it reaches the lattice capacity, as confirmed by Raman spectroscopy. As a result, the amounts of both active oxygen species and acidic sites on the surface, which critically determine the reaction performance, also increase and reach the maximum level for the catalyst with a Cu content close to the lattice capacity. A distinct lattice capacity threshold effect on the structure and reactivity of Sn-Cu binary oxide catalysts has been observed. A Sn-Cu catalyst with the best reaction performance can be obtained by doping the SnO2 matrix with the lattice capacity amount of Cu^2+.
文摘By X-ray powder diffraction technique and oxygen content analysis, a solid solution Sm1+xBa2-xCu3Oy has been determined in the range 0≤x≤0.4. When x<0.25. the Sm1+xBa2-xCu3Oy presents orthorhombic symmetry, and the orthorhombic-tetragonaJ transition ocCurs at x = 0.25. With the increase of x, TC decreases and finally breaks. The correlation between ox ygen content and phase structure at different quench temperatures related to Sm Ba2Cu3Oy has been investigated as well
文摘Ion mobility in solid solutions of the fluorite structure 50Pb2–30BiF3–20KF (I) and 50Pb2–30BiF3–20NaF (II) was studied by NMR method. Analysis of 19F, 23Na NMR spectra made it possible to reveal the character of ion motions in the fluoride and sodium sublattices with temperature variation, to determine the types and temperature ranges in which they took place. It was found that the dominant form of ionic mobility in the samples I and II above 380 K was the diffusion of fluoride and sodium ions. According to preliminary results of electro-physical studies, the conductivity reached values of ~ 2×10–2 – 10–3 S/cm above 500 K. The solid solutions I and II can be recommended as a basis for use in the development of new functional materials.
基金Project(2132046)supported by the Beijing Natural Science Foundation,ChinaProject(51104007)supported by the National Natural Science Foundation of China
文摘Ni-Y2O3 nanocomposite powder with uniform distribution of fine oxide particles in the metal matrix was successfully fabricated via solution combustion process followed by hydrogen reduction. The combustion behavior was investigated by DTA-TG analysis. The influence of urea to nickel nitrate(U/Ni) ratio on the combustion behavior and morphology evolution of the combusted powder was investigated. The morphological characteristics and phase transformation of the combusted powder and the reduced powder were characterized by FESEM, TEM and XRD. The HRTEM image of Ni-Y2O3 nanocomposite powder indicated that Y2O3 particles with average particle size of about 10 nm dispersed uniformly in the nickel matrix.
文摘The three way catalysts (TWCs) promoters (Ce Zr)O 2, (Pr Ce Zr)O 2 and (Pr Zr)O 2 were prepared by sol gel like method. They were characterized by XRD, EXAFS and BET surface area determination. The reduction features of the promoters were measured by temperature programmed reduction (TPR) of H 2 to access the potential for the promoters containing praseodymia as oxygen storage component in three way catalyst. The (Pr Zr)O 2 cubic solid solution is formed at high temperature up to 800 ℃, which makes it more reducible than the (Ce Zr)O 2 solid solution. For the (Pr Ce Zr)O 2 samples, the ternary solid solution plays an important role in the reduction process. The performance of the three way catalysts with fully formulated Pt, Pd and Rh is proceeded by using both light off temperature under a stoichiometric gas composition and the conversion of CO, C 3H 6 and NO under changing air/fuel ratio at a constant reaction temperature 400 ℃ . The results indicate that a small amount of praseodymia doping into (Ce Zr)O 2 favors the light off temperature of C 3H 6 and NO, and all the catalysts containing praseodymia obviously exhibits enhanced width of S value for NO conversion at lean region ( S ≥1.00).
基金Project supported by the National Natural Science Foundation of China (20101006)Nano Technology Special Foundationof Shanghai Science and Technology Committee (0452nm073) and Shanghai Education Committee
文摘Agglomeration-free nanosized ZrO2-HfO2-Y2O3-Sc2O3 composite powders were successfully synthesized by Sol-Gel technique in heated aqueous solution of alcohol, using analytically pure ZrOCl2 · 8H2O, HfOCl2·8H2O, Y(NO3)3·6H2O, and Sc2O3 as raw materials. The effect of synthesis condition on the size and dispersity of the composite powders was investigated by means of XRD, TEM, and TG-DSC techniques. The results showed that well-dispersed predecessor of ZrO2-HfO2-Y2O3-Sc2O3 composite nanopowders could be obtained. The optional condition : PEG6000 as dispersant was 1%, alcohol/H2O ratio was 5/1, metallic ion concentration in whole solution was 0.5 mol·L^-1 and the pH value of the solution was 12. After calcined at 620 ℃, the powder obtained was in uniform cubic structure, and its average particle size was about 13 nm, which was good for producing nanocrystalline solid electrolyte.
文摘In this paper we have systematically studied V-L equilibrium in ternary aqueous solutions containingvolatile electrolytes by introducing a ternary interaction term into Edwards generalized molecular thermody-namic model and optimizing several adjustable parameters.The program PARA9 with flexible functions ofdoing a series of calculations has been developed and carried out on a TQ-16 computer.It can be usedeither for directly calculating the V-L equilibrium or for optimizing the adjustable parameters.For the sys-toms(NH3-CO3-H2O3,NH3-H2S-H2O and NH3-SO2-H2O)satisfactory results have been obtained withrelative mean deviation of 5-10%.Besides,several sets of adjustable parameters and valuable information ofactivity coefficients,equilibrium concentrations of ions and molecules in solutions are obtained.
基金support from the National Natural Science Foundation of China(Nos.52272222,52072197)Outstanding Youth Foundation of Shandong Province,China(No.ZR2019JQ14)+4 种基金University Youth Innovation Team of Shandong Province(Nos.2019KJC004,202201010318)the Natural Science Foundation of Shandong Province,China(No.ZR2021MB061)Major Scientific and Technological Innovation Project(No.2019JZZY020405)Taishan Scholar Young Talent Program(No.tsqn201909114)Major Basic Research Program of Natural Science Foundation of Shandong Province under Grant(No.ZR2020ZD09).
文摘For the pursuit of high energy supercapacitors,the development of high performance pseudocapacitance or battery-type negative electrode material is urgently needed to make up for the capacity shortage of commercial electric double layer capacitor(EDLC)type materials.Herein,a porous and defect-rich Fe_(x)Bi_(2-x)S_(3) solid solution structure is firstly constructed by employing Fe-doped Bi_(2)O_(2)CO_(3) porous nanosheets as a precursor,which presents dramatically increased energy storage performance than Bi_(2)S_(3) and FeS_(2) phase.For the optimized Fe_(x)Bi_(2-x)S_(3) solid solution(FeBiS-60%),the Fe solute is free and random dispersed in Bi_(2)S_(3) framework,which can effectively modulate the electronic structure of Bi element and introduce rich-defect due to the existence of Fe(II).Meanwhile,the FeBiS-60%,constructed by pore nanosheets that are assembled by self-supported basic nanorod units,presents rich mesoporous channels for fast mass transfer and abundant active sites for promoting capacity performance.Therefore,a high capacitance of 832.8 F·g^(-1) at a current density of 1 A·g^(-1) is achieved by the FeBiS-60%electrode.Furthermore,a fabricated Ni3S_(2)@Co_(3)S_(4)(NCS)//FeBiS-60%hybrid supercapacitor device delivers an outstanding energy density of 85.33 Wh·kg^(-1) at the power density of 0.799 kW·kg^(-1),and ultra-long lifespan of remaining 86.7%initial capacitance after 8700 cycles.
基金The National Natural Science Foundation of China(No.11047005)the Science Foundation of Southeast University
文摘Due to the negligible non-perturbation effect in the low-energy region, quantum chromodynamics (QCD) is limited to be applied to hadron problems in particle physics. However, QED has mature non-perturbation models which can be applied to Fermi acting-energy between quark and gluon. This paper applies quantum electrodynamics in 2 + 1 dimensions (QED3) to the Fermi condensation problems. First, the Dyson-Schwinger equation which the fermions satisfy is constructed, and then the Fermi energy gap is solved. Theoretical calculations show that within the chirality limit, there exist three solutions for the energy gap; beyond the chirality limit, there are two solutions; all these solutions correspond to different fermion condensates. It can be concluded that the fermion condensates within the chirality limit can be used to analyze the existence of antiferromagnetic, pseudogap, and superconducting phases, and two fermion condensates are discovered beyond the chirality limit.
基金Project supported by the National Natural Science Foundation of China (No. 20471044), and the Natural Science Foundation of Hubei Province (No. 2005ABA053), China
文摘SO4^2- / TiO2-La2O3, a novel solid superacid, was prepared and its catalytic activities at different synthetic conditions are discussed with esterification of n-butanoic acid and n-butyl alcohol as probing reaction. The optimum conditions have also been found, mole ratio of n(La^3+):n(Ti^4+) is 1:34, the soaked consistency of H2SO4 is 0.8 tool/L, the soaked time of HESO4 is 24 h, the calcining temperature is 480 ℃, the calcining time is 3 h. Then it was applied in the catalytic synthesis often important ketals and acetals as catalyst and revealed high catalytic activity. Under these conditions on which the molar ratio of aldehyde/ketone to glycol is l: 1.5, the mass ratio of the catalyst used in the reactants is 0.5%, and the reaction time is 1.0 h, the yields of ketals and acetals can reach 41.4%-95.8%.
基金the National Natural Science Foundation of China (50774018)
文摘(Bi2O3)0.73(Y2O3)0.27 fine powders prepared by wet chemical precipitation method were cold isostatically pressed to form solid electrolyte tubes, and sintered at 900 ℃ for 10 h in the air. Their pumping oxygen characteristics in non-dehydrated Ar gas were investigated, where a ZrO2 (Y2O3 stabilized) oxygen sensor was used to measure the oxygen partial pressure Po2. The results showed that the Po2 value reached magnitudes of 1×10^-2-1×10^-10 Pa at the applied pumping oxygen voltage of 0.5 V, 1×10^-37-1×10^-27 Pa at 1.0 V and 1×10^-53-1×10^47 Pa at 2.0 V within the temperature range from 550 to 650 ℃. Moreover, no cracks were found in the tested solid electrolyte tubes. Thus, the Bi2O3-Y2O3 system might be used in solid electrolyte oxygen pump for purifying gases.
基金The study is supported by the Key Research Program of the Ministry of National Education(Authorized No.:00191)the Natural Science Foundation of Jiangxi Province(Authorized No.:0150032).
文摘Al2O3 short fiber reinforced La-bearing Al-5%Cu alloy was fabricated by squeeze casting, and the solidified structure and the solute segregation during alloy solidification were studied. The results indicated that La has been enriched near the interface which is favorable to improve the wettability between the fiber and At alloy, but the RE-rich phase was not formed at the interface. At the end of the solidification of the composites, the change of the solute in the surplus liquid phase results in the type of matrix alloy being changed because of the selective crystallization, and the segregation at the interface is finally formed. There is no special influence by La on the Cu segregation in the matrix alloy.