Metal(aluminum and boron)based energetic materials have been wildly applied in various fields including aerospace,explosives and micro-devices due to their high energy density.Unfortunately,the low combustion efficien...Metal(aluminum and boron)based energetic materials have been wildly applied in various fields including aerospace,explosives and micro-devices due to their high energy density.Unfortunately,the low combustion efficiency and reactivity of metal fuels,especially boron(B),severely limit their practical applications.Herein,multi-component 3D microspheres of HMX/B/Al/PTFE(HBA)have been designed and successfully prepared by emulsion and solvent evaporation method to achieve superior energy and combustion reactivity.The reactivity and energy output of HBA are systematically measured by ignitionburning test,constant-volume explosion vessel system and bomb calorimetry.Due to the increased interfacial contact and reaction area,HBA shows higher flame propagation rate,faster pressurization rate and larger combustion heat of 29.95 cm/s,1077 kPa/s,and 6164.43 J/g,which is 1.5 times,3.5 times,and 1.03 times of the physical mixed counterpart(HBA-P).Meanwhile,HBA also shows enhanced energy output and reactivity than 3D microspheres of HMX/B/PTFE(HB)resulting from the high reactivity of Al.The reaction mechanism of 3D microspheres is comprehensively investigated through combustion emission spectral and thermal analysis(TG-DSC-MS).The superior reactivity and energy of HBA originate from the surface etching of fluorine to the inert shell(Al_(2)O_(3) and B_(2)O_(3))and the initiation effect of Al to B.This work offers a promising approach to design and prepare high-performance energetic materials for the practical applications.展开更多
印染废水中过高浓度的Al^(3+)不仅会破坏生态环境,而且还将危害人类健康。因此,对印染废水中Al^(3+)浓度的精准检测具有十分重要的研究意义。本文以罗丹明B、乙二胺和4-甲酰基-3-羟基苯甲酸为原料,合成了新型荧光探针RhB-AC,并利用高分...印染废水中过高浓度的Al^(3+)不仅会破坏生态环境,而且还将危害人类健康。因此,对印染废水中Al^(3+)浓度的精准检测具有十分重要的研究意义。本文以罗丹明B、乙二胺和4-甲酰基-3-羟基苯甲酸为原料,合成了新型荧光探针RhB-AC,并利用高分辨质谱(HRMS)及核磁共振氢谱(1H NMR)对探针RhB-AC的分子结构进行了表征。探针RhB-AC在水中,由于光诱导的电子转移(Photoinduced electron transfer,PET)效应,其荧光发生猝灭。当与Al^(3+)作用后,PET效应被抑制,探针表现出很强的青绿色荧光。另外,该探针对Al^(3+)检测的速度快(3秒以内)、选择性好、灵敏度高(检测限为16 nM)。最后,该探针还能快速、定量检测实际印染废水中的Al^(3+)浓度。展开更多
基金the National Natural Science Foundation of China(Grant Nos.T2222027,12202416 and 12272359).
文摘Metal(aluminum and boron)based energetic materials have been wildly applied in various fields including aerospace,explosives and micro-devices due to their high energy density.Unfortunately,the low combustion efficiency and reactivity of metal fuels,especially boron(B),severely limit their practical applications.Herein,multi-component 3D microspheres of HMX/B/Al/PTFE(HBA)have been designed and successfully prepared by emulsion and solvent evaporation method to achieve superior energy and combustion reactivity.The reactivity and energy output of HBA are systematically measured by ignitionburning test,constant-volume explosion vessel system and bomb calorimetry.Due to the increased interfacial contact and reaction area,HBA shows higher flame propagation rate,faster pressurization rate and larger combustion heat of 29.95 cm/s,1077 kPa/s,and 6164.43 J/g,which is 1.5 times,3.5 times,and 1.03 times of the physical mixed counterpart(HBA-P).Meanwhile,HBA also shows enhanced energy output and reactivity than 3D microspheres of HMX/B/PTFE(HB)resulting from the high reactivity of Al.The reaction mechanism of 3D microspheres is comprehensively investigated through combustion emission spectral and thermal analysis(TG-DSC-MS).The superior reactivity and energy of HBA originate from the surface etching of fluorine to the inert shell(Al_(2)O_(3) and B_(2)O_(3))and the initiation effect of Al to B.This work offers a promising approach to design and prepare high-performance energetic materials for the practical applications.
文摘印染废水中过高浓度的Al^(3+)不仅会破坏生态环境,而且还将危害人类健康。因此,对印染废水中Al^(3+)浓度的精准检测具有十分重要的研究意义。本文以罗丹明B、乙二胺和4-甲酰基-3-羟基苯甲酸为原料,合成了新型荧光探针RhB-AC,并利用高分辨质谱(HRMS)及核磁共振氢谱(1H NMR)对探针RhB-AC的分子结构进行了表征。探针RhB-AC在水中,由于光诱导的电子转移(Photoinduced electron transfer,PET)效应,其荧光发生猝灭。当与Al^(3+)作用后,PET效应被抑制,探针表现出很强的青绿色荧光。另外,该探针对Al^(3+)检测的速度快(3秒以内)、选择性好、灵敏度高(检测限为16 nM)。最后,该探针还能快速、定量检测实际印染废水中的Al^(3+)浓度。