期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Semi-Automatic Fracture Mapping Using Cellular Neural Networks Applied to ALOS PALSAR 2 Images of the Western Highlands of Cameroon
1
作者 Valère-Carin Jofack Sokeng Benjamin N’gounou Ngatcha +2 位作者 Fernand Koffi Kouame Jean Homian Danumah Lucette Akpa You 《International Journal of Geosciences》 2021年第11期1055-1069,共15页
In Cameroon in general and in the Highlands of Cameroon in particular, there is no fracture map since its realization is not easy. The region’s harsh accessibility and climatic conditions make it difficult to carry o... In Cameroon in general and in the Highlands of Cameroon in particular, there is no fracture map since its realization is not easy. The region’s harsh accessibility and climatic conditions make it difficult to carry out geological prospecting field missions that require large investments. This study proposes a semi-automatic lineament mapping approach to facilitate the elaboration of the fracture map in the West Cameroon Highlands. It uses neural networks in tandem with PCI Geomatica’s LINE algorithm to extract lineaments semi-automatically from an ALOS PALSAR 2 radar image. The cellular neural network algorithm of Lepage et al (2000) is implemented to enhance the pre-processed radar image. Then, the LINE module of Geomatica is applied </span><span style="font-family:Verdana;">to</span><span style="font-family:Verdana;"> the enhanced image for the automatic extraction of lineaments. Finally, a control and a validation of the expert by spatial analysis allows elaborat</span><span style="font-family:Verdana;">ing</span><span style="font-family:Verdana;"> the fracture map. The results obtained show that neural networks enhance and facilitate the identification of lineaments on the image. The resulting map contains more than 1800 fractures with major directions N20<span style="white-space:nowrap;">&#176;</span> - 30<span style="white-space:nowrap;">&#176;</span>, NS, N10<span style="white-space:nowrap;">&#176;</span> - 20<span style="white-space:nowrap;">&#176;</span>, N50<span style="white-space:nowrap;">&#176;</span> - 60<span style="white-space:nowrap;">&#176;</span>, N70<span style="white-space:nowrap;">&#176;</span> - 80<span style="white-space:nowrap;">&#176;</span>, N80<span style="white-space:nowrap;">&#176;</span> - 90<span style="white-space:nowrap;">&#176;</span>, N100<span style="white-space:nowrap;">&#176;</span> - 110<span style="white-space:nowrap;">&#176;</span>, N110<span style="white-space:nowrap;">&#176;</span> - 120<span style="white-space:nowrap;">&#176;</span> and N130<span style="white-space:nowrap;">&#176;</span> - 140<span style="white-space:nowrap;">&#176;</span> and N140<span style="white-space:nowrap;">&#176;</span> - 150<span style="white-space:nowrap;">&#176;</span>. It can be very useful for geological and hydrogeological studies, and especially to inform on the productivity of aquifers in this region of high agro-pastoral and mining interest for Cameroon and the Central African sub-region. 展开更多
关键词 Fracture Map Lineament Mapping Cellular Neural Networks Highlands of Cameroon alos palsar image
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部