由于RFID设备固有特性的限制和环境噪声的影响,造成RFID原始数据的不确定,进一步引起标签位置信息的不准确,严重影响目标对象识别、定位以及跟踪与追溯等业务功能。在物流仓库中基于实际采样处理的电子标签可能溢出到相邻阅读器识别区...由于RFID设备固有特性的限制和环境噪声的影响,造成RFID原始数据的不确定,进一步引起标签位置信息的不准确,严重影响目标对象识别、定位以及跟踪与追溯等业务功能。在物流仓库中基于实际采样处理的电子标签可能溢出到相邻阅读器识别区域这一冗余特点,利用贝叶斯概率推断模型并辅以最小熵的阅读器识别模型,从RFID不确定数据流中捕获标签数据的位置概率分布,采用自适应Markov Chain Monte Carlo(MCMC)方法联合估计物流仓库中RFID数据与标签符号位置参数。最后,利用仿真实验对本算法的有效性和准确性进行了验证。展开更多
文摘由于RFID设备固有特性的限制和环境噪声的影响,造成RFID原始数据的不确定,进一步引起标签位置信息的不准确,严重影响目标对象识别、定位以及跟踪与追溯等业务功能。在物流仓库中基于实际采样处理的电子标签可能溢出到相邻阅读器识别区域这一冗余特点,利用贝叶斯概率推断模型并辅以最小熵的阅读器识别模型,从RFID不确定数据流中捕获标签数据的位置概率分布,采用自适应Markov Chain Monte Carlo(MCMC)方法联合估计物流仓库中RFID数据与标签符号位置参数。最后,利用仿真实验对本算法的有效性和准确性进行了验证。