The heavy fuel compression ignition engines are widely equipped as aircraft piston engines. The fuel injection system is one of the key technologies that determines the performance of engine. One of the main challenge...The heavy fuel compression ignition engines are widely equipped as aircraft piston engines. The fuel injection system is one of the key technologies that determines the performance of engine. One of the main challenges is to precisely control the injected fuel quantity and flow rate in the presence of pressure fluctuation. This challenge is even more serious for heavy fuel. An original design for electrically controlled high pressure fuel injection system called Multi-Pumppressure-reservoirs fuel injection System(MPS) was demonstrated to reduce the pressure fluctuation and help keep injection stable. MPS was compared with an ordinary high pressure Common Rail fuel injection System(CRS). This work established one-dimensional AMESim and mathematical models for both CRS and MPS to study the effect of different structures and geometric parameters on the pressure fluctuations. The calculations show that the average fuel pressure fluctuation of MPS can be reduced by 57% for the crankshaft speed of 1900 r/min, and the pressure fluctuation before injection reduced by 100%. It is concluded that the pressure performance of MPS is less sensitive to pressure reservoir volume than that of CRS, and there is an opportunity for further volume reduction.展开更多
文摘The heavy fuel compression ignition engines are widely equipped as aircraft piston engines. The fuel injection system is one of the key technologies that determines the performance of engine. One of the main challenges is to precisely control the injected fuel quantity and flow rate in the presence of pressure fluctuation. This challenge is even more serious for heavy fuel. An original design for electrically controlled high pressure fuel injection system called Multi-Pumppressure-reservoirs fuel injection System(MPS) was demonstrated to reduce the pressure fluctuation and help keep injection stable. MPS was compared with an ordinary high pressure Common Rail fuel injection System(CRS). This work established one-dimensional AMESim and mathematical models for both CRS and MPS to study the effect of different structures and geometric parameters on the pressure fluctuations. The calculations show that the average fuel pressure fluctuation of MPS can be reduced by 57% for the crankshaft speed of 1900 r/min, and the pressure fluctuation before injection reduced by 100%. It is concluded that the pressure performance of MPS is less sensitive to pressure reservoir volume than that of CRS, and there is an opportunity for further volume reduction.