2G-NPR bolt (the 2nd generation Negative Poisson’s Ratio bolt) is a new type of bolt with high strength, high toughness and no yield platform. It has signifcant efects on improving the shear strength of jointed rock ...2G-NPR bolt (the 2nd generation Negative Poisson’s Ratio bolt) is a new type of bolt with high strength, high toughness and no yield platform. It has signifcant efects on improving the shear strength of jointed rock mass and controlling the stability of surrounding rock. To achieve an accurate simulation of bolted joint shear tests, we have studied a numerical simulation method that takes into account the 2G-NPR bolt's tensile–shear fracture criterion. Firstly, the indoor experimental study on the tensile–shear mechanical properties of 2G-NPR bolt is carried out to explore its mechanical properties under diferent tensile–shear angles, and the fracture criterion of 2G-NPR bolt considering the tensile–shear angle is established. Then, a three-dimensional numerical simulation method considering the tensile–shear mechanical constitutive and fracture criterion of 2G-NPR bolt, the elastoplastic mechanical behavior of surrounding rock and the damage and deterioration of grouting body is proposed. The feasibility and accuracy of the method are verifed by comparing with the indoor shear test results of 2G-NPR bolt anchorage joints. Finally, based on the numerical simulation results, the deformation and stress of the bolt, the distribution of the plastic zone of the rock mass, the stress distribution and the damage of the grouting body are analyzed in detail. The research results can provide a good reference value for the practical engineering application and shear mechanical performance analysis of 2G-NPR bolt.展开更多
A Double Shear Model(DSM) was used in a numerical simulation on bolted rock joint shearing performance.An entire bolt deformed as the letter'U'under a shear load between two joints.Near the bolt-joint intersec...A Double Shear Model(DSM) was used in a numerical simulation on bolted rock joint shearing performance.An entire bolt deformed as the letter'U'under a shear load between two joints.Near the bolt-joint intersection,the bolt partly deformed as the letter'Z'.There were two critical points along the bolt:one was at the bolt-joint intersection with zero bending moment and the other at the maximum bending moment(plastic hinge) with zero shear stress.The blocks on two sides slid along the bolt as it deformed. A separation area was found between the two joint contact surfaces of the middle rock block and sided block.This area of separation was related to bolt diameter and external forces.We assume that this area is related to the work of external forces.Further research is needed.展开更多
The 3D FEM numerical simulation on multi-action precision cold forging technology of universal joint cross and differential spider is done in this article using DEFORM Software, a commercial computer aided engineering...The 3D FEM numerical simulation on multi-action precision cold forging technology of universal joint cross and differential spider is done in this article using DEFORM Software, a commercial computer aided engineering software specializing in forming and heat treatment simulation technology, and suitable for cold, warm and hot forging process. The material flow properties, the dynamic variation of stress and strain in the process of deformation and the load-stroke curve have also been achieved. A good consistency is exhibited between simulation results and practical data. Based on the DEFORM simulation results, the optimized procedure has been found for forging a universal joint cross. What should be emphasized here is that a better understanding of practical forging characters and the environmental factors can greatly improve the simulation accuracy thus make the simulation results more reliable.展开更多
The joint probability distribution of wind speed and significant wave height in the Bohai Bay was investigated by comparing the Gurnbel logistic model, the Gumbel-Hougaard (GH) copula function, and the Clayton copul...The joint probability distribution of wind speed and significant wave height in the Bohai Bay was investigated by comparing the Gurnbel logistic model, the Gumbel-Hougaard (GH) copula function, and the Clayton copula function. Twenty years of wind data from 1989 to 2008 were collected from the European Centre for Medium-Range Weather Forecasts (ECMWF) database and the blended wind data of the Quick Scatterometer (QSCAT) satellite data set and re-analysis data from the United States National Centers for Environmental Prediction (NCEP). Several typhoons were taken into account and merged with the background wind fields from the ECMWF or QSCAT/NCEP database. The 20-year data of significant wave height were calculated with the unstructured-grid version of the third-generation wind wave model Simulating WAves Nearshore (SWAN) under extreme wind process conditions. The Gumbel distribution was used for univariate and marginal distributions. The distribution parameters were estimated with the method of L-moments. Based on the marginal distributions, the joint probability distributions, the associated return periods, and the conditional probability distributions were obtained. The GH copula function was found to be optimal according to the ordinary least squares (OLS) test. The results show that wind waves are the prevailing type of wave in the Bohai Bay.展开更多
A revised displacement discontinuity method(DDM) program is developed for the simulation of rock joint propagation and dilatancy analysis. The non-linear joint model used in the program adopts Barton-Bandis normal def...A revised displacement discontinuity method(DDM) program is developed for the simulation of rock joint propagation and dilatancy analysis. The non-linear joint model used in the program adopts Barton-Bandis normal deformation model, Kulhaway shear deformation model and Mohr-Coulomb criterion. The joint propagation criterion is based on the equivalent stress intensity factor which can be obtained by regression analysis. The simulated rock joint propagation accords well with the existing knowledge. The closure and opening of joint is investigated by DDM, and it is shown that if the opening volume of propagated joint is larger than closure volume of the old joint, the joint dilatancy occurs. The dilatancy condition is mainly controlled by the normal stiffness of the rock joint. When the normal stiffness is larger than the critical value, joint dilatancy occurs. The critical normal stiffness of rock joint changes with the joint-load angle, and joint dilatancy is most possible to occur at 30°.展开更多
Based on CT scanning pictures from a volunteer's knee joint, a three-dimensional finite element model of the healthy human knee joint is constructed including complete femur, tibia, fibular, patellar and the main car...Based on CT scanning pictures from a volunteer's knee joint, a three-dimensional finite element model of the healthy human knee joint is constructed including complete femur, tibia, fibular, patellar and the main cartilage and ligaments. This model was validated using experimental and numerical results obtained from other authors. The pressure distribution of contact surfaces of knee joint are calculated and analyzed under the load action of ‘heel strike', ‘single limb stance' and ‘toe-off'. The results of the gait cycle are that the contact areas of medial cartilage are larger than that of lateral cartilage; the contact force and contact areas would grow larger with the load increasing; the pressure of lateral meniscus is steady, relative to the significant variation of peak pressure in medial meniscus; and the peak value of contact pressure on all components are usually found at about 4570 of the gait cycle.展开更多
Nonlinear finite element simulation for mechanical response of surface mounted solder joint under different temperature cycling was carried out. Seven sets of parameters were used in order to evaluate the influence of...Nonlinear finite element simulation for mechanical response of surface mounted solder joint under different temperature cycling was carried out. Seven sets of parameters were used in order to evaluate the influence of temperature cycling profile parameters. The results show that temperature cycling history has significant effect on the stress response of the solder joint. Based on the concept of relative damage stress proposed by the authors, it is found that enough high temperature holding time is necessary for designing the temperature cycling profile in accelerated thermal fatigue test.展开更多
The electric field intensity (EFI) is important characteristic quantity for evaluating the internal insulation state of cable joints. Based on finite element method, this paper proposes two EFI research methods, field...The electric field intensity (EFI) is important characteristic quantity for evaluating the internal insulation state of cable joints. Based on finite element method, this paper proposes two EFI research methods, field-circuit coupling method and equivalent circuit method. The average EFI of the inner surface of the outer semi-conducting shield can be calculated from the current in the measuring circuit. The relative error between these two methods is about 15%, which roughly proves the consistency of the two methods. Further practical application research enables online monitoring of cable joints.展开更多
The analysis of the impulse voltage on the internal electric field of the cable joint plays a key role in studying the breakdown of the joint. Based on the finite element method, a three-dimensional electromagnetic fi...The analysis of the impulse voltage on the internal electric field of the cable joint plays a key role in studying the breakdown of the joint. Based on the finite element method, a three-dimensional electromagnetic field simulation model of the cable joint is established in this paper. Simulation results show that the voltage at the head of the cable joint reaches about twice the impulse voltage. The increase of the conductivity of semi-conductive material also leads to the increase of electric field intensity. Then, several points and curves at different positions are selected for further analysis in this paper. Among them, the electric field distortion at the edge of the high voltage shield is the most serious and the electric field in the air gap is the least.展开更多
Corresponding to the sliding and the overturning failure,the elementary motion modes of caisson breakwater include the horizontal-rotational oscillation coupled motion,the horizontal sliding-rotational oscillation cou...Corresponding to the sliding and the overturning failure,the elementary motion modes of caisson breakwater include the horizontal-rotational oscillation coupled motion,the horizontal sliding-rotational oscillation coupled motion,the horizontal vibrating-uplift rocking coupled motion,and the horizontal sliding-uplift rocking coupled motion.The motion mode of a caisson will transform from one to another depending on the wave forces and the motion behaviors of the caisson.The numerical models of four motion modes of caisson are developed,and the numerical simulation procedure for joint motion process of various modes of caisson breakwater under wave excitation is presented and tested by a physical model experiment.It is concluded that the simulation procedure is reliable and can be applied to the dynamic stability analysis of caisson breakwaters.展开更多
With the development of ocean engineering, it is one of the most important factors which determine the structural safety, cost and suitable forms of engineerings to select the ocean environmental design criteria. Owin...With the development of ocean engineering, it is one of the most important factors which determine the structural safety, cost and suitable forms of engineerings to select the ocean environmental design criteria. Owing to the complexity , variation and randomness of ocean environmental conditions, the commonly used methods for determining design criteria cannot consider the joint occurring probabilities of several environmental factors ,therefore, lead to overestimate design criteria of them and result in an unnecessary overspend invest in engineering. On the basis of the measured and hindcasting data and the multi-demension joint probability theory, this paper presented the study of the joint loads of wind , wave and current on the offshore structures and its responsible joint probability level with the application of random simulation techniques, and presented the joint design criteria of environmental loads for the realistic design of engineerings.展开更多
A biomimetic hip joint simulator that can be used to evaluate the outcome of the cemented total hip replacement has been designed, manufactured and evaluated. The simulator produces motion in the extension/flexion pla...A biomimetic hip joint simulator that can be used to evaluate the outcome of the cemented total hip replacement has been designed, manufactured and evaluated. The simulator produces motion in the extension/flexion plane, with a socket to rotate internal/externally. At the same time a dynamic loading cycle is applied. A validation test was performed on a cemented femoral stem within a novel composite femur. The hone quality has a strong effect on the stem migration and on the integrity of the interfaces. The migration of the stem is a combination of 3-D translation and rotation of the stem. Under the same loading conditions, weak bone allows more stem migration than strong bone. There is a great decrease in the strength of the stem-cement interface after the dynamic test, and the weak bone composite exhibited a greater reduction in interfacial strength than the strong bone composite. The decrease of the interfacial strength indicates that the primary bonding between the stem and the cement mantle had deteriorated and the integrity of stem-cement interface was damaged. The study demonstrates the value of using a hip joint simulator to investigate stem migration and interface integrity within the cemented hip replacement, suggesting that method can be used for in vitro evaluation of the biomaterials used in the cemented hip replacements.展开更多
Rock mass is a fractured porous medium usually subjected to complex geostress and fluid pressure simultaneously.Moreover,the properties of rock mass change in time and space due to mining-induced fractures.Therefore,i...Rock mass is a fractured porous medium usually subjected to complex geostress and fluid pressure simultaneously.Moreover,the properties of rock mass change in time and space due to mining-induced fractures.Therefore,it is always challenging to accurately measure rock mass properties.In this study,a three-dimensional(3D)microseismic(MS)data-driven damage model for jointed rock mass under hydro-mechanical coupling conditions is proposed.It is a 3D finite element model that takes seepage,damage and stress field effects into account jointly.Multiple factors(i.e.joints,water and microseismicity)are used to optimize the rock mass mechanical parameters at different scales.The model is applied in Shirengou iron mine to study the damage evolution of rock mass and assess the crown pillar stability during the transition from open-pit to underground mining.It is found that the damage pattern is mostly controlled by the structure,water and rock mass parameters.The damage pattern is evidently different from the two-dimensional result and is more consistent with the field observations.This difference is caused by the MS-derived damage acting on the rock mass.MS data are responsible for gradually correcting the damage zone,changing the direction in which it expands,and promoting it to evolve close to reality.For the crown pillar,the proposed model yields a more trustworthy safety factor.In order to guarantee the stability of the pillar,it is suggested to take waterproof and reinforcement measures in areas with a high degree of damage.展开更多
Torque control algorithm and its simulation of capturing a moving target for Free Flying Space Robots(FFSR) are discussed in this paper. The efficient recursive algorithm of joint driven torque for FFSR is developed. ...Torque control algorithm and its simulation of capturing a moving target for Free Flying Space Robots(FFSR) are discussed in this paper. The efficient recursive algorithm of joint driven torque for FFSR is developed. The torque control algorithm combined with Resolved Motion Rate Contro(RMRC) based on Generalized Jacobian Matrix(GJM) for capturing a moving target is proposed. The computer simulation verifies the effectiveness of the proposed algorithm.展开更多
Conventional seismic wave forward simulation generally uses mathematical means to solve the macroscopic wave equation,and then obtains the corresponding seismic wavefield.Usually,when the subsurface structure is finel...Conventional seismic wave forward simulation generally uses mathematical means to solve the macroscopic wave equation,and then obtains the corresponding seismic wavefield.Usually,when the subsurface structure is finely constructed and the continuity of media is poor,this strategy is difficult to meet the requirements of accurate wavefield calculation.This paper uses the multiple-relaxation-time lattice Boltzmann method(MRT-LBM)to conduct the seismic acoustic wavefield simulation and verify its computational accuracy.To cope with the problem of severe reflections at the truncated boundaries,we analogize the viscous absorbing boundary and perfectly matched layer(PML)absorbing boundary based on the single-relaxation-time lattice Boltzmann(SRT-LB)equation to the MRT-LB equation,and further,propose a joint absorbing boundary through comparative analysis.We give the specific forms of the modified MRT-LB equation loaded with the joint absorbing boundary in the two-dimensional(2D)and three-dimensional(3D)cases,respectively.Then,we verify the effects of this absorbing boundary scheme on a 2D homogeneous model,2D modified British Petroleum(BP)gas-cloud model,and 3D homogeneous model,respectively.The results reveal that by comparing with the viscous absorbing boundary and PML absorbing boundary,the joint absorbing boundary has the best absorption performance,although it is a little bit complicated.Therefore,this joint absorbing boundary better solves the problem of truncated boundary reflections of MRT-LBM in simulating seismic acoustic wavefields,which is pivotal to its wide application in the field of exploration seismology.展开更多
This work presents and analyses a geostatistical methodology for spatial modelling of Soil Lime Requirements (SLR) considering punctual samples of Cation Exchange Capacity (CEC) and Base Saturation (BS) soil propertie...This work presents and analyses a geostatistical methodology for spatial modelling of Soil Lime Requirements (SLR) considering punctual samples of Cation Exchange Capacity (CEC) and Base Saturation (BS) soil properties. Geostatistical Sequential Indicator Simulation is used to draw realizations from the joint uncertainty distributions of the CEC and the BS input variables. The joint distributions are accomplished applying the Principal Component Analyses (PCA) approach. The Monte Carlo method for handling error propagations is used to obtain realization values of the SLR model which are considered to compute and store statistics from the output uncertainty model. From these statistics, it is obtained predictions and uncertainty maps that represent the spatial variation of the output variable and the propagated uncertainty respectively. Therefore, the prediction map of the output model is qualified with uncertainty information that should be used on decision making activities related to the planning and management of environmental phenomena. The proposed methodology for SLR modelling presented in this article is illustrated using CEC and BS input sample sets obtained in a farm located in Ponta Grossa city, Paraná state, Brazil.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(41941018).
文摘2G-NPR bolt (the 2nd generation Negative Poisson’s Ratio bolt) is a new type of bolt with high strength, high toughness and no yield platform. It has signifcant efects on improving the shear strength of jointed rock mass and controlling the stability of surrounding rock. To achieve an accurate simulation of bolted joint shear tests, we have studied a numerical simulation method that takes into account the 2G-NPR bolt's tensile–shear fracture criterion. Firstly, the indoor experimental study on the tensile–shear mechanical properties of 2G-NPR bolt is carried out to explore its mechanical properties under diferent tensile–shear angles, and the fracture criterion of 2G-NPR bolt considering the tensile–shear angle is established. Then, a three-dimensional numerical simulation method considering the tensile–shear mechanical constitutive and fracture criterion of 2G-NPR bolt, the elastoplastic mechanical behavior of surrounding rock and the damage and deterioration of grouting body is proposed. The feasibility and accuracy of the method are verifed by comparing with the indoor shear test results of 2G-NPR bolt anchorage joints. Finally, based on the numerical simulation results, the deformation and stress of the bolt, the distribution of the plastic zone of the rock mass, the stress distribution and the damage of the grouting body are analyzed in detail. The research results can provide a good reference value for the practical engineering application and shear mechanical performance analysis of 2G-NPR bolt.
基金Financial support from the National Natural Science Foundation of China(No.50978251)the National Government Building High-Level University Graduate Programs of the China Scholarship Council
文摘A Double Shear Model(DSM) was used in a numerical simulation on bolted rock joint shearing performance.An entire bolt deformed as the letter'U'under a shear load between two joints.Near the bolt-joint intersection,the bolt partly deformed as the letter'Z'.There were two critical points along the bolt:one was at the bolt-joint intersection with zero bending moment and the other at the maximum bending moment(plastic hinge) with zero shear stress.The blocks on two sides slid along the bolt as it deformed. A separation area was found between the two joint contact surfaces of the middle rock block and sided block.This area of separation was related to bolt diameter and external forces.We assume that this area is related to the work of external forces.Further research is needed.
文摘The 3D FEM numerical simulation on multi-action precision cold forging technology of universal joint cross and differential spider is done in this article using DEFORM Software, a commercial computer aided engineering software specializing in forming and heat treatment simulation technology, and suitable for cold, warm and hot forging process. The material flow properties, the dynamic variation of stress and strain in the process of deformation and the load-stroke curve have also been achieved. A good consistency is exhibited between simulation results and practical data. Based on the DEFORM simulation results, the optimized procedure has been found for forging a universal joint cross. What should be emphasized here is that a better understanding of practical forging characters and the environmental factors can greatly improve the simulation accuracy thus make the simulation results more reliable.
基金supported by the Science Fund for Creative Research Groups of the National Natural ScienceFoundation of China (Grant No. 51021004)the National High Technology Research and DevelopmentProgram of China (863 Program, Grants No. 2012AA112509 and 2012AA051702)
文摘The joint probability distribution of wind speed and significant wave height in the Bohai Bay was investigated by comparing the Gurnbel logistic model, the Gumbel-Hougaard (GH) copula function, and the Clayton copula function. Twenty years of wind data from 1989 to 2008 were collected from the European Centre for Medium-Range Weather Forecasts (ECMWF) database and the blended wind data of the Quick Scatterometer (QSCAT) satellite data set and re-analysis data from the United States National Centers for Environmental Prediction (NCEP). Several typhoons were taken into account and merged with the background wind fields from the ECMWF or QSCAT/NCEP database. The 20-year data of significant wave height were calculated with the unstructured-grid version of the third-generation wind wave model Simulating WAves Nearshore (SWAN) under extreme wind process conditions. The Gumbel distribution was used for univariate and marginal distributions. The distribution parameters were estimated with the method of L-moments. Based on the marginal distributions, the joint probability distributions, the associated return periods, and the conditional probability distributions were obtained. The GH copula function was found to be optimal according to the ordinary least squares (OLS) test. The results show that wind waves are the prevailing type of wave in the Bohai Bay.
基金Project(2009318000046) supported by the Western Transport Technical Program of the Ministry of Transport,China
文摘A revised displacement discontinuity method(DDM) program is developed for the simulation of rock joint propagation and dilatancy analysis. The non-linear joint model used in the program adopts Barton-Bandis normal deformation model, Kulhaway shear deformation model and Mohr-Coulomb criterion. The joint propagation criterion is based on the equivalent stress intensity factor which can be obtained by regression analysis. The simulated rock joint propagation accords well with the existing knowledge. The closure and opening of joint is investigated by DDM, and it is shown that if the opening volume of propagated joint is larger than closure volume of the old joint, the joint dilatancy occurs. The dilatancy condition is mainly controlled by the normal stiffness of the rock joint. When the normal stiffness is larger than the critical value, joint dilatancy occurs. The critical normal stiffness of rock joint changes with the joint-load angle, and joint dilatancy is most possible to occur at 30°.
基金supported by the National Natural Science Foundation of China(No.10702048).
文摘Based on CT scanning pictures from a volunteer's knee joint, a three-dimensional finite element model of the healthy human knee joint is constructed including complete femur, tibia, fibular, patellar and the main cartilage and ligaments. This model was validated using experimental and numerical results obtained from other authors. The pressure distribution of contact surfaces of knee joint are calculated and analyzed under the load action of ‘heel strike', ‘single limb stance' and ‘toe-off'. The results of the gait cycle are that the contact areas of medial cartilage are larger than that of lateral cartilage; the contact force and contact areas would grow larger with the load increasing; the pressure of lateral meniscus is steady, relative to the significant variation of peak pressure in medial meniscus; and the peak value of contact pressure on all components are usually found at about 4570 of the gait cycle.
文摘Nonlinear finite element simulation for mechanical response of surface mounted solder joint under different temperature cycling was carried out. Seven sets of parameters were used in order to evaluate the influence of temperature cycling profile parameters. The results show that temperature cycling history has significant effect on the stress response of the solder joint. Based on the concept of relative damage stress proposed by the authors, it is found that enough high temperature holding time is necessary for designing the temperature cycling profile in accelerated thermal fatigue test.
文摘The electric field intensity (EFI) is important characteristic quantity for evaluating the internal insulation state of cable joints. Based on finite element method, this paper proposes two EFI research methods, field-circuit coupling method and equivalent circuit method. The average EFI of the inner surface of the outer semi-conducting shield can be calculated from the current in the measuring circuit. The relative error between these two methods is about 15%, which roughly proves the consistency of the two methods. Further practical application research enables online monitoring of cable joints.
文摘The analysis of the impulse voltage on the internal electric field of the cable joint plays a key role in studying the breakdown of the joint. Based on the finite element method, a three-dimensional electromagnetic field simulation model of the cable joint is established in this paper. Simulation results show that the voltage at the head of the cable joint reaches about twice the impulse voltage. The increase of the conductivity of semi-conductive material also leads to the increase of electric field intensity. Then, several points and curves at different positions are selected for further analysis in this paper. Among them, the electric field distortion at the edge of the high voltage shield is the most serious and the electric field in the air gap is the least.
基金supported by the National Natural Science Foundation of China(Grant No.50979069)the Science and Technology Project of West China Traffic Construction(Grant No.200632800003-06)
文摘Corresponding to the sliding and the overturning failure,the elementary motion modes of caisson breakwater include the horizontal-rotational oscillation coupled motion,the horizontal sliding-rotational oscillation coupled motion,the horizontal vibrating-uplift rocking coupled motion,and the horizontal sliding-uplift rocking coupled motion.The motion mode of a caisson will transform from one to another depending on the wave forces and the motion behaviors of the caisson.The numerical models of four motion modes of caisson are developed,and the numerical simulation procedure for joint motion process of various modes of caisson breakwater under wave excitation is presented and tested by a physical model experiment.It is concluded that the simulation procedure is reliable and can be applied to the dynamic stability analysis of caisson breakwaters.
文摘With the development of ocean engineering, it is one of the most important factors which determine the structural safety, cost and suitable forms of engineerings to select the ocean environmental design criteria. Owing to the complexity , variation and randomness of ocean environmental conditions, the commonly used methods for determining design criteria cannot consider the joint occurring probabilities of several environmental factors ,therefore, lead to overestimate design criteria of them and result in an unnecessary overspend invest in engineering. On the basis of the measured and hindcasting data and the multi-demension joint probability theory, this paper presented the study of the joint loads of wind , wave and current on the offshore structures and its responsible joint probability level with the application of random simulation techniques, and presented the joint design criteria of environmental loads for the realistic design of engineerings.
文摘A biomimetic hip joint simulator that can be used to evaluate the outcome of the cemented total hip replacement has been designed, manufactured and evaluated. The simulator produces motion in the extension/flexion plane, with a socket to rotate internal/externally. At the same time a dynamic loading cycle is applied. A validation test was performed on a cemented femoral stem within a novel composite femur. The hone quality has a strong effect on the stem migration and on the integrity of the interfaces. The migration of the stem is a combination of 3-D translation and rotation of the stem. Under the same loading conditions, weak bone allows more stem migration than strong bone. There is a great decrease in the strength of the stem-cement interface after the dynamic test, and the weak bone composite exhibited a greater reduction in interfacial strength than the strong bone composite. The decrease of the interfacial strength indicates that the primary bonding between the stem and the cement mantle had deteriorated and the integrity of stem-cement interface was damaged. The study demonstrates the value of using a hip joint simulator to investigate stem migration and interface integrity within the cemented hip replacement, suggesting that method can be used for in vitro evaluation of the biomaterials used in the cemented hip replacements.
基金We acknowledge the combined support from the National Natural Science Foundation of China(Grant Nos.52039007 and 42102325)Tiandi Science and Technology Co.,Ltd.(Grant No.2022-2-TD-MS012).
文摘Rock mass is a fractured porous medium usually subjected to complex geostress and fluid pressure simultaneously.Moreover,the properties of rock mass change in time and space due to mining-induced fractures.Therefore,it is always challenging to accurately measure rock mass properties.In this study,a three-dimensional(3D)microseismic(MS)data-driven damage model for jointed rock mass under hydro-mechanical coupling conditions is proposed.It is a 3D finite element model that takes seepage,damage and stress field effects into account jointly.Multiple factors(i.e.joints,water and microseismicity)are used to optimize the rock mass mechanical parameters at different scales.The model is applied in Shirengou iron mine to study the damage evolution of rock mass and assess the crown pillar stability during the transition from open-pit to underground mining.It is found that the damage pattern is mostly controlled by the structure,water and rock mass parameters.The damage pattern is evidently different from the two-dimensional result and is more consistent with the field observations.This difference is caused by the MS-derived damage acting on the rock mass.MS data are responsible for gradually correcting the damage zone,changing the direction in which it expands,and promoting it to evolve close to reality.For the crown pillar,the proposed model yields a more trustworthy safety factor.In order to guarantee the stability of the pillar,it is suggested to take waterproof and reinforcement measures in areas with a high degree of damage.
文摘Torque control algorithm and its simulation of capturing a moving target for Free Flying Space Robots(FFSR) are discussed in this paper. The efficient recursive algorithm of joint driven torque for FFSR is developed. The torque control algorithm combined with Resolved Motion Rate Contro(RMRC) based on Generalized Jacobian Matrix(GJM) for capturing a moving target is proposed. The computer simulation verifies the effectiveness of the proposed algorithm.
基金This work is supported in part by the National Natural Science Foundation of China(U19B6003-04-01,42204132,41874130)R&D Department of CNPC(2022DQ0604-01)China Postdoctoral Science Foundation(2020M680667,2021T140661).
文摘Conventional seismic wave forward simulation generally uses mathematical means to solve the macroscopic wave equation,and then obtains the corresponding seismic wavefield.Usually,when the subsurface structure is finely constructed and the continuity of media is poor,this strategy is difficult to meet the requirements of accurate wavefield calculation.This paper uses the multiple-relaxation-time lattice Boltzmann method(MRT-LBM)to conduct the seismic acoustic wavefield simulation and verify its computational accuracy.To cope with the problem of severe reflections at the truncated boundaries,we analogize the viscous absorbing boundary and perfectly matched layer(PML)absorbing boundary based on the single-relaxation-time lattice Boltzmann(SRT-LB)equation to the MRT-LB equation,and further,propose a joint absorbing boundary through comparative analysis.We give the specific forms of the modified MRT-LB equation loaded with the joint absorbing boundary in the two-dimensional(2D)and three-dimensional(3D)cases,respectively.Then,we verify the effects of this absorbing boundary scheme on a 2D homogeneous model,2D modified British Petroleum(BP)gas-cloud model,and 3D homogeneous model,respectively.The results reveal that by comparing with the viscous absorbing boundary and PML absorbing boundary,the joint absorbing boundary has the best absorption performance,although it is a little bit complicated.Therefore,this joint absorbing boundary better solves the problem of truncated boundary reflections of MRT-LBM in simulating seismic acoustic wavefields,which is pivotal to its wide application in the field of exploration seismology.
文摘This work presents and analyses a geostatistical methodology for spatial modelling of Soil Lime Requirements (SLR) considering punctual samples of Cation Exchange Capacity (CEC) and Base Saturation (BS) soil properties. Geostatistical Sequential Indicator Simulation is used to draw realizations from the joint uncertainty distributions of the CEC and the BS input variables. The joint distributions are accomplished applying the Principal Component Analyses (PCA) approach. The Monte Carlo method for handling error propagations is used to obtain realization values of the SLR model which are considered to compute and store statistics from the output uncertainty model. From these statistics, it is obtained predictions and uncertainty maps that represent the spatial variation of the output variable and the propagated uncertainty respectively. Therefore, the prediction map of the output model is qualified with uncertainty information that should be used on decision making activities related to the planning and management of environmental phenomena. The proposed methodology for SLR modelling presented in this article is illustrated using CEC and BS input sample sets obtained in a farm located in Ponta Grossa city, Paraná state, Brazil.