Obesity is a worldwide epidemic. Promoting browning of white adipose tissue(WAT)contributes to increased energy expenditure and hence counteracts obesity. Here we show that cordycepin(Cpn), a natural derivative of ade...Obesity is a worldwide epidemic. Promoting browning of white adipose tissue(WAT)contributes to increased energy expenditure and hence counteracts obesity. Here we show that cordycepin(Cpn), a natural derivative of adenosine, increases energy expenditure, inhibits weight gain, improves metabolic profile and glucose tolerance, decreases WAT mass and adipocyte size, and enhances cold tolerance in normal and high-fat diet-fed mice. Cpn markedly increases the surface temperature around the inguinal WAT and turns the inguinal fat browner. Further investigations show that Cpn induces the development of brown-like adipocytes in inguinal and, to a less degree, epididymal WAT depots. Cpn also increases the expression of uncoupling protein 1(UCP1) and other thermogenic genes in WAT and3T3-L1 differentiated adipocytes, in which AMP-activated protein kinase(AMPK) plays an important role. Our results provide novel insights into the function of Cpn in regulating energy balance, and suggest a potential utility of Cpn in the treatment of obesity.展开更多
The AMP-activated protein kinase(AMPK)is a sensor of cellular energy status that is almost universally expressed in eukaryotic cells.While it appears to have evolved in single-celled eukaryotes to regulate energy bala...The AMP-activated protein kinase(AMPK)is a sensor of cellular energy status that is almost universally expressed in eukaryotic cells.While it appears to have evolved in single-celled eukaryotes to regulate energy balance in a cell-autonomous manner,during the evolution of multicellular animals its role has become adapted so that it also regulates energy balance at the whole body level,by responding to hormones that act primarily on the hypothalamus.AMPK monitors energy balance at the cellular level by sensing the ratios of AMP/ATP and ADP/ATP,and recent structural analyses of the AMPK heterotrimer that have provided insight into the complex mechanisms for these effects will be discussed.Given the central importance of energy balance in diseases that are major causes of morbidity or death in humans,such as type 2 diabetes,cancer and inflammatory disorders,there has been a major drive to develop pharmacological activators of AMPK.Many such activators have been described,and the various mechanisms by which these activate AMPK will be discussed.A particularly large class of AMPK activators are natural products of plants derived from traditional herbal medicines.While the mechanism by which most of these activate AMPK has not yet been addressed,I will argue that many of them may be defensive compounds produced by plants to deter infection by pathogens or grazing by insects or herbivores,and that many of them will turn out to be inhibitors of mitochondrial function.展开更多
Objective:To investigate the changes of the AMP-activated protein kinase(AMPK)/uncoupling protein 2(UCP2)(AMPK/UCP2)pathway in ovarian granulosa cells with PCOS and its relationship with mitochondrial dysfunction.Meth...Objective:To investigate the changes of the AMP-activated protein kinase(AMPK)/uncoupling protein 2(UCP2)(AMPK/UCP2)pathway in ovarian granulosa cells with PCOS and its relationship with mitochondrial dysfunction.Methods:PCOS mouse models and normally fed mice,ovarian granulosa cells from the two mice were extracted,and the protein expression levels of AMPKα,p-AMPKαand UCP2 were detected by western blotting.The ROS and ATP content of granulosa cells were determined by colorimetric and chemiluminescence immunoassays to assess mitochondrial function.Pearson correlation analysis was used to determine the correlation between AMPK/UCP2 pathway-related proteins,ROS and ATP.Results:P-AMPKα/GAPDH(0.12±0.09),AMPKα/GAPDH(0.35±0.40),P-AMPKα/AMPKα(0.56±0.33)and ATP(0.36±0.04)pmol/mg in PCOS model mice were lower than those in non-POCS groups,while UCP2/GAPDH(1.18±0.28)and ROS(48810.92±4498.08)were lower than those in non-POCS groups.The fluorescence intensity of DCF was higher than that of the non-POCS group(P<0.05).AMPK was positively correlated with ATP and negatively correlated with ROS.UCP2 was positively correlated with ROS and negatively correlated with ATP.Conclusion:There are abnormal changes such as decreased AMPK expression and increased UCP2 expression in ovarian granulosa cells of PCOS,and AMPK is positively and negatively correlated with mitochondrial function indexes ATP and ROS,while UCP2 is the opposite,suggesting that the imbalance in the expression and activity of AMPK/UCP2 pathway in PCOS may be one of the molecular mechanisms leading to mitochondrial dysfunction.Regulation of AMPK/UCP2 pathway activity may be a potential therapeutic target to ameliorate PCOS-related mitochondrial dysfunction.展开更多
Cardiac remodelling is generally accepted as a critical process in the progression of heart failure. Myocyte hypertrophy,inflammatory responses and cardiac fibrosis are the main pathological changes associated with ca...Cardiac remodelling is generally accepted as a critical process in the progression of heart failure. Myocyte hypertrophy,inflammatory responses and cardiac fibrosis are the main pathological changes associated with cardiac remodelling.AMP-activated protein kinase(AMPK) is known as an energy sensor and a regulator of cardiac metabolism under normal and ischaemic conditions. Additionally, AMPK has been shown to play roles in cardiac remodelling extending well beyond metabolic regulation. In this review, we discuss the currently defined roles of AMPK in cardiac remodelling and summarize the effects of AMPK on cardiac hypertrophy, inflammatory responses and fibrosis and the molecular mechanisms underlying these effects. In addition, we discuss some pharmacological activators of AMPK that are promising treatments for cardiac remodelling.展开更多
Down syndrome cell adhesion molecule(DSCAM)acts as a netrin-1 receptor and mediates attractive response of axons to netrin-1 in neural development.However,the signaling mechanisms of netrin-DSCAM remain unclear.Here w...Down syndrome cell adhesion molecule(DSCAM)acts as a netrin-1 receptor and mediates attractive response of axons to netrin-1 in neural development.However,the signaling mechanisms of netrin-DSCAM remain unclear.Here we report that AMP-activated protein kinase(AMPK)interacts with DSCAM through itsγsubunit,but does not interact with DCC(deleted in co-lorectal cancer),another major receptor for netrin-1.Netrin-treatment of cultured cortical neurons leads to increased phosphorylation of AMPK.Both AMPK mu-tant with dominant-negative effect and AMPK inhibitor can significantly suppress netrin-1 induced neurite outgrowth.Together,these findings demonstrate that AMPK interacts with DSCAM and plays an important role in netrin-1 induced neurite outgrowth.Our study uncovers a previously unknown component,AMPK,in netrin-DSCAM signaling pathway.展开更多
We found compound 12N-p-trifluoromethylbenzenesulfonyl matrinane(1)was a potent anti-diabetic agent.Thirty-five tricyclic matrinic derivatives were synthesized and determined for their stimulatory effects on glucose c...We found compound 12N-p-trifluoromethylbenzenesulfonyl matrinane(1)was a potent anti-diabetic agent.Thirty-five tricyclic matrinic derivatives were synthesized and determined for their stimulatory effects on glucose consumption in L6 myotubes,taking 1 as the lead.In high-fat diet(HFD)and STZ induced diabetic mice,9a significantly lowers blood glucose,improves glucose tolerance,and especially alleviates diabetic nephropathy and islet damage.Mechanism study indicates that 9a simultaneously targets mitochondrial complex I to increase AMP/ATP ratio,as well as liver kinase B1(LKB1)and calcium/calmodulindependent protein kinase(Ca MKK),which synergistically activates AMPKαand then stimulates glucose transporter 4(GLUT4)membrane translocation and 2-deoxyglucose(2-DG)uptake to exert anti-diabetic efficacy.Therefore,compound 9a with a novel structure is a promising anti-diabetic candidate with the advantage of multiple-target mechanism,worthy of further investigation.展开更多
Calorie restriction(CR)is a dietary regime based on low calorie intake.CR without malnutrition extends lifespan in a wide range of organisms from yeast to rodents,and CR can prevent and delay the onset of age-related ...Calorie restriction(CR)is a dietary regime based on low calorie intake.CR without malnutrition extends lifespan in a wide range of organisms from yeast to rodents,and CR can prevent and delay the onset of age-related functional decline and diseases in human and non-human primates.CR is a safe and effective intervention to reduce vascular risk factors in humans.In recent years,studies in rodents have provided mechanistic insights into the beneficial effects of CR on vascular homeostasis,including reduced oxidative stress,enhanced nitric oxide(NO)bioactivity,and decreased inflammation.A number of important molecules,including sirtuins,AMP-activated protein kinase,mammalian targets of rapamycin,endothelial nitric oxidase and their regulatory pathways are involved in the maintenance of vascular homeostasis.Evidence has shown that these pathways are responsible for many aspects of CR’s effects,and that they may also mediate the effects of CR on vasculature.展开更多
基金supported financially by the National Natural Science Foundation of China (81402983, 81573436)CAMS Innovation Fund for Medical Sciences (CIFMS) 2016-I2M-3–015the National Major Scientific and Technological Special Project for "Significant New Drugs Development" (2015ZX09501005, China)
文摘Obesity is a worldwide epidemic. Promoting browning of white adipose tissue(WAT)contributes to increased energy expenditure and hence counteracts obesity. Here we show that cordycepin(Cpn), a natural derivative of adenosine, increases energy expenditure, inhibits weight gain, improves metabolic profile and glucose tolerance, decreases WAT mass and adipocyte size, and enhances cold tolerance in normal and high-fat diet-fed mice. Cpn markedly increases the surface temperature around the inguinal WAT and turns the inguinal fat browner. Further investigations show that Cpn induces the development of brown-like adipocytes in inguinal and, to a less degree, epididymal WAT depots. Cpn also increases the expression of uncoupling protein 1(UCP1) and other thermogenic genes in WAT and3T3-L1 differentiated adipocytes, in which AMP-activated protein kinase(AMPK) plays an important role. Our results provide novel insights into the function of Cpn in regulating energy balance, and suggest a potential utility of Cpn in the treatment of obesity.
基金funded by a Senior Investigator Award(No.097726)from the Wellcome Trusta programme grant(No.C37030/A15101)from Cancer Research UK
文摘The AMP-activated protein kinase(AMPK)is a sensor of cellular energy status that is almost universally expressed in eukaryotic cells.While it appears to have evolved in single-celled eukaryotes to regulate energy balance in a cell-autonomous manner,during the evolution of multicellular animals its role has become adapted so that it also regulates energy balance at the whole body level,by responding to hormones that act primarily on the hypothalamus.AMPK monitors energy balance at the cellular level by sensing the ratios of AMP/ATP and ADP/ATP,and recent structural analyses of the AMPK heterotrimer that have provided insight into the complex mechanisms for these effects will be discussed.Given the central importance of energy balance in diseases that are major causes of morbidity or death in humans,such as type 2 diabetes,cancer and inflammatory disorders,there has been a major drive to develop pharmacological activators of AMPK.Many such activators have been described,and the various mechanisms by which these activate AMPK will be discussed.A particularly large class of AMPK activators are natural products of plants derived from traditional herbal medicines.While the mechanism by which most of these activate AMPK has not yet been addressed,I will argue that many of them may be defensive compounds produced by plants to deter infection by pathogens or grazing by insects or herbivores,and that many of them will turn out to be inhibitors of mitochondrial function.
文摘Objective:To investigate the changes of the AMP-activated protein kinase(AMPK)/uncoupling protein 2(UCP2)(AMPK/UCP2)pathway in ovarian granulosa cells with PCOS and its relationship with mitochondrial dysfunction.Methods:PCOS mouse models and normally fed mice,ovarian granulosa cells from the two mice were extracted,and the protein expression levels of AMPKα,p-AMPKαand UCP2 were detected by western blotting.The ROS and ATP content of granulosa cells were determined by colorimetric and chemiluminescence immunoassays to assess mitochondrial function.Pearson correlation analysis was used to determine the correlation between AMPK/UCP2 pathway-related proteins,ROS and ATP.Results:P-AMPKα/GAPDH(0.12±0.09),AMPKα/GAPDH(0.35±0.40),P-AMPKα/AMPKα(0.56±0.33)and ATP(0.36±0.04)pmol/mg in PCOS model mice were lower than those in non-POCS groups,while UCP2/GAPDH(1.18±0.28)and ROS(48810.92±4498.08)were lower than those in non-POCS groups.The fluorescence intensity of DCF was higher than that of the non-POCS group(P<0.05).AMPK was positively correlated with ATP and negatively correlated with ROS.UCP2 was positively correlated with ROS and negatively correlated with ATP.Conclusion:There are abnormal changes such as decreased AMPK expression and increased UCP2 expression in ovarian granulosa cells of PCOS,and AMPK is positively and negatively correlated with mitochondrial function indexes ATP and ROS,while UCP2 is the opposite,suggesting that the imbalance in the expression and activity of AMPK/UCP2 pathway in PCOS may be one of the molecular mechanisms leading to mitochondrial dysfunction.Regulation of AMPK/UCP2 pathway activity may be a potential therapeutic target to ameliorate PCOS-related mitochondrial dysfunction.
基金supported by the National Natural Science Foundation of China (81530009 to Youyi Zhang, 81670205 to Han Xiao)
文摘Cardiac remodelling is generally accepted as a critical process in the progression of heart failure. Myocyte hypertrophy,inflammatory responses and cardiac fibrosis are the main pathological changes associated with cardiac remodelling.AMP-activated protein kinase(AMPK) is known as an energy sensor and a regulator of cardiac metabolism under normal and ischaemic conditions. Additionally, AMPK has been shown to play roles in cardiac remodelling extending well beyond metabolic regulation. In this review, we discuss the currently defined roles of AMPK in cardiac remodelling and summarize the effects of AMPK on cardiac hypertrophy, inflammatory responses and fibrosis and the molecular mechanisms underlying these effects. In addition, we discuss some pharmacological activators of AMPK that are promising treatments for cardiac remodelling.
基金supported by the National Basic Research Program(973 Program)(Nos.2010CB529603 and 2009CB825402)the National Natural Science Foundation of China(91132710)and Chinese Academy of Science(CASNN-GWPPS-2008)supported by NIH(RO1AG033004 and R56NS074763)and ALS Therapy Alliance.
文摘Down syndrome cell adhesion molecule(DSCAM)acts as a netrin-1 receptor and mediates attractive response of axons to netrin-1 in neural development.However,the signaling mechanisms of netrin-DSCAM remain unclear.Here we report that AMP-activated protein kinase(AMPK)interacts with DSCAM through itsγsubunit,but does not interact with DCC(deleted in co-lorectal cancer),another major receptor for netrin-1.Netrin-treatment of cultured cortical neurons leads to increased phosphorylation of AMPK.Both AMPK mu-tant with dominant-negative effect and AMPK inhibitor can significantly suppress netrin-1 induced neurite outgrowth.Together,these findings demonstrate that AMPK interacts with DSCAM and plays an important role in netrin-1 induced neurite outgrowth.Our study uncovers a previously unknown component,AMPK,in netrin-DSCAM signaling pathway.
基金supported by CAMS Innovation Fund for Medical Sciences(No.2021-12M-1-030)the Natural Science Foundation of Beijing Municipality(No.7202131)Chinese Pharmaceutical Association-Yiling Pharmaceutical Innovation Fund for Biomedicine(No.GL-1-B04-20190397)。
文摘We found compound 12N-p-trifluoromethylbenzenesulfonyl matrinane(1)was a potent anti-diabetic agent.Thirty-five tricyclic matrinic derivatives were synthesized and determined for their stimulatory effects on glucose consumption in L6 myotubes,taking 1 as the lead.In high-fat diet(HFD)and STZ induced diabetic mice,9a significantly lowers blood glucose,improves glucose tolerance,and especially alleviates diabetic nephropathy and islet damage.Mechanism study indicates that 9a simultaneously targets mitochondrial complex I to increase AMP/ATP ratio,as well as liver kinase B1(LKB1)and calcium/calmodulindependent protein kinase(Ca MKK),which synergistically activates AMPKαand then stimulates glucose transporter 4(GLUT4)membrane translocation and 2-deoxyglucose(2-DG)uptake to exert anti-diabetic efficacy.Therefore,compound 9a with a novel structure is a promising anti-diabetic candidate with the advantage of multiple-target mechanism,worthy of further investigation.
基金supported by the National Natural Science Foundation of China (31271227,91339201)the Beijing Nova Program (XX2013064)the National Basic Research Program of China (2011CB503902)
文摘Calorie restriction(CR)is a dietary regime based on low calorie intake.CR without malnutrition extends lifespan in a wide range of organisms from yeast to rodents,and CR can prevent and delay the onset of age-related functional decline and diseases in human and non-human primates.CR is a safe and effective intervention to reduce vascular risk factors in humans.In recent years,studies in rodents have provided mechanistic insights into the beneficial effects of CR on vascular homeostasis,including reduced oxidative stress,enhanced nitric oxide(NO)bioactivity,and decreased inflammation.A number of important molecules,including sirtuins,AMP-activated protein kinase,mammalian targets of rapamycin,endothelial nitric oxidase and their regulatory pathways are involved in the maintenance of vascular homeostasis.Evidence has shown that these pathways are responsible for many aspects of CR’s effects,and that they may also mediate the effects of CR on vasculature.