We investigated the relationship between muscle inosine monophosphate (IMP) content and mRNA levels of ADSL, AMPD1, and ATIC in Dapulian (DPL), Landrace × Dapulian (LDPL), and Duroc × Landrace × Dapulia...We investigated the relationship between muscle inosine monophosphate (IMP) content and mRNA levels of ADSL, AMPD1, and ATIC in Dapulian (DPL), Landrace × Dapulian (LDPL), and Duroc × Landrace × Dapulian (DLDPL) hybridized pigs. Methods: The total RNA in longissimus dorsi was isolated from Dapulian (DPL), Landrace × Dapulian (LDPL) and Duroc × Landrace × Dapulian (DLDPL) hybridized pigs, weighed about 95.0 kg, n = 8/species. The internal genes with highest stability (YWHAZ and RPL4) were chosen from 11 common internal genes using Quantitative real-time PCR (qPCR) and geNorm software. The mRNA levels of ADSL, AMPD1 and ATIC genes were corrected with YWHAZ and RPL4 genes. The muscular IMP content was determined by HPLC. The muscular IMP content in DPL was higher than that in LDPL and DLDPL, 25.00% (p 0.05) and 15.56% (p > 0.05), respectively. The muscular mRNA level of ADSL gene in DPL and LDPL was higher than that in DLDPL, 24.14% and 12.07%, respectively (p 0.05). The muscular mRNA level of ATIC gene in DPL and LDPL was higher than that in DLDPL, 66.67% and 33.33%, respectively (p 0.05). The muscular mRNA level of AMPD1 gene in DPL and LDPL was higher than that in DLDPL, 14.49% and 33.26%, respectively. Furthermore, the IMP content was positively correlated with the mRNA level of ADSL, AMPD1 and ATIC genes, respectively (p 0.05). The mRNA level of ADSL gene was highly related to that of AMPD1 and ATIC gene, respectively (p 0.01), while that of AMPD1 gene was not strongly correlated with that of ATIC gene (p > 0.05). The muscular mRNA level of AMPD1, ADSL and ATIC genes and the muscular IMP content in DPL were highest, followed by those in LDPL and DLDPL. The muscular IMP content was positively correlated with the muscular mRNA level of ADSL, AMPD1 and ATIC genes, respectively.展开更多
AMP deaminase catalyzes the conversion of AMP into IMP and ammonia. In the present study, a full-length cDNA of AMPD1 from skeletal muscle of Japanese flounder Paralichthys olivaceus was cloned and characterized. The ...AMP deaminase catalyzes the conversion of AMP into IMP and ammonia. In the present study, a full-length cDNA of AMPD1 from skeletal muscle of Japanese flounder Paralichthys olivaceus was cloned and characterized. The 2 526 bp cDNA contains a 5'-UTR of 78 bp, a 3'-UTR of 237 bp and an open reading frame (ORF) of 2 211 bp, which encodes a protein of 736 amino acids. The predicted protein contains a highly conserved AMP deaminase motif (SLSTDDP) and an ATP-binding site sequence (EPLMEEYAIAAQVFK). Phylogenetic analysis showed that the AMPD1 and AMPD3 genes originate from the same branch, but are evolutionarily distant from the AMPD2 gene. RT-PCR showed that the flounder AMPD1 gene was expressed only in skeletal muscle. QRT-PCR analysis revealed a statistically significant 2.54 fold higher level of AMPD1 mRNA in adult muscle (750±40 g) compared with juvenile muscle (7.5±2 g) (P<0.05). HPLC analysis showed that the IMP content in adult muscle (3.35±0.21 mg/g) was also statistically significantly higher than in juvenile muscle (1.08±0.04 mg/g) (P<0.05). There is a direct relationship between the AMPD1 gene expression level and IMP content in the skeletal muscle of juvenile and adult flounders. These results may provide useful information for quality improvement and molecular breeding of aquatic animals.展开更多
文摘We investigated the relationship between muscle inosine monophosphate (IMP) content and mRNA levels of ADSL, AMPD1, and ATIC in Dapulian (DPL), Landrace × Dapulian (LDPL), and Duroc × Landrace × Dapulian (DLDPL) hybridized pigs. Methods: The total RNA in longissimus dorsi was isolated from Dapulian (DPL), Landrace × Dapulian (LDPL) and Duroc × Landrace × Dapulian (DLDPL) hybridized pigs, weighed about 95.0 kg, n = 8/species. The internal genes with highest stability (YWHAZ and RPL4) were chosen from 11 common internal genes using Quantitative real-time PCR (qPCR) and geNorm software. The mRNA levels of ADSL, AMPD1 and ATIC genes were corrected with YWHAZ and RPL4 genes. The muscular IMP content was determined by HPLC. The muscular IMP content in DPL was higher than that in LDPL and DLDPL, 25.00% (p 0.05) and 15.56% (p > 0.05), respectively. The muscular mRNA level of ADSL gene in DPL and LDPL was higher than that in DLDPL, 24.14% and 12.07%, respectively (p 0.05). The muscular mRNA level of ATIC gene in DPL and LDPL was higher than that in DLDPL, 66.67% and 33.33%, respectively (p 0.05). The muscular mRNA level of AMPD1 gene in DPL and LDPL was higher than that in DLDPL, 14.49% and 33.26%, respectively. Furthermore, the IMP content was positively correlated with the mRNA level of ADSL, AMPD1 and ATIC genes, respectively (p 0.05). The mRNA level of ADSL gene was highly related to that of AMPD1 and ATIC gene, respectively (p 0.01), while that of AMPD1 gene was not strongly correlated with that of ATIC gene (p > 0.05). The muscular mRNA level of AMPD1, ADSL and ATIC genes and the muscular IMP content in DPL were highest, followed by those in LDPL and DLDPL. The muscular IMP content was positively correlated with the muscular mRNA level of ADSL, AMPD1 and ATIC genes, respectively.
基金Supported by the National Natural Science Foundation of China (No.41206144)the National High Technology Research and Development Program of China (863 Program) (No. 2008AA100805)
文摘AMP deaminase catalyzes the conversion of AMP into IMP and ammonia. In the present study, a full-length cDNA of AMPD1 from skeletal muscle of Japanese flounder Paralichthys olivaceus was cloned and characterized. The 2 526 bp cDNA contains a 5'-UTR of 78 bp, a 3'-UTR of 237 bp and an open reading frame (ORF) of 2 211 bp, which encodes a protein of 736 amino acids. The predicted protein contains a highly conserved AMP deaminase motif (SLSTDDP) and an ATP-binding site sequence (EPLMEEYAIAAQVFK). Phylogenetic analysis showed that the AMPD1 and AMPD3 genes originate from the same branch, but are evolutionarily distant from the AMPD2 gene. RT-PCR showed that the flounder AMPD1 gene was expressed only in skeletal muscle. QRT-PCR analysis revealed a statistically significant 2.54 fold higher level of AMPD1 mRNA in adult muscle (750±40 g) compared with juvenile muscle (7.5±2 g) (P<0.05). HPLC analysis showed that the IMP content in adult muscle (3.35±0.21 mg/g) was also statistically significantly higher than in juvenile muscle (1.08±0.04 mg/g) (P<0.05). There is a direct relationship between the AMPD1 gene expression level and IMP content in the skeletal muscle of juvenile and adult flounders. These results may provide useful information for quality improvement and molecular breeding of aquatic animals.