A 3D motion and geometric information system of single-antenna radar is proposed,which can be supported by spotlight synthetic aperture radar(SAR) system and inverse SAR(ISAR) system involving relative 3D motion o...A 3D motion and geometric information system of single-antenna radar is proposed,which can be supported by spotlight synthetic aperture radar(SAR) system and inverse SAR(ISAR) system involving relative 3D motion of the rigid target.In this system,applying the geometry invariance of the rigid target,the unknown 3D shape and motion of the radar target can be reconstructed from the 1D range data of some scatterers extracted from the high-resolution range image.Compared with the current 1D-to-3D algorithm,in the proposed algorithm,the requirement of the 1D range data is expanded to incomplete formation involving large angular motion of the target and hence,the quantity of the scatterers and the abundance of 3D motion are enriched.Furthermore,with the three selected affine coordinates fixed,the multi-solution problem of the reconstruction is solved and the technique of nonlinear optimization can be successfully utilized in the system.Two simulations are implemented which verify the higher robustness of the system and the better performance of the 3D reconstruction for the radar target with unknown relative motion.展开更多
Automatically detecting Ulva prolifera(U.prolifera)in rainy and cloudy weather using remote sensing imagery has been a long-standing problem.Here,we address this challenge by combining high-resolution Synthetic Apertu...Automatically detecting Ulva prolifera(U.prolifera)in rainy and cloudy weather using remote sensing imagery has been a long-standing problem.Here,we address this challenge by combining high-resolution Synthetic Aperture Radar(SAR)imagery with the machine learning,and detect the U.prolifera of the South Yellow Sea of China(SYS)in 2021.The findings indicate that the Random Forest model can accurately and robustly detect U.prolifera,even in the presence of complex ocean backgrounds and speckle noise.Visual inspection confirmed that the method successfully identified the majority of pixels containing U.prolifera without misidentifying noise pixels or seawater pixels as U.prolifera.Additionally,the method demonstrated consistent performance across different im-ages,with an average Area Under Curve(AUC)of 0.930(+0.028).The analysis yielded an overall accuracy of over 96%,with an average Kappa coefficient of 0.941(+0.038).Compared to the traditional thresholding method,Random Forest model has a lower estimation error of 14.81%.Practical application indicates that this method can be used in the detection of unprecedented U.prolifera in 2021 to derive continuous spatiotemporal changes.This study provides a potential new method to detect U.prolifera and enhances our under-standing of macroalgal outbreaks in the marine environment.展开更多
基金supported by the National Natural Science Foundation of China (60572093)the Doctoral Program of Higher Education(20050004016)the Outstanding Doctoral Science Innovation Foundation of Beijing Jiaotong University (141095522)
文摘A 3D motion and geometric information system of single-antenna radar is proposed,which can be supported by spotlight synthetic aperture radar(SAR) system and inverse SAR(ISAR) system involving relative 3D motion of the rigid target.In this system,applying the geometry invariance of the rigid target,the unknown 3D shape and motion of the radar target can be reconstructed from the 1D range data of some scatterers extracted from the high-resolution range image.Compared with the current 1D-to-3D algorithm,in the proposed algorithm,the requirement of the 1D range data is expanded to incomplete formation involving large angular motion of the target and hence,the quantity of the scatterers and the abundance of 3D motion are enriched.Furthermore,with the three selected affine coordinates fixed,the multi-solution problem of the reconstruction is solved and the technique of nonlinear optimization can be successfully utilized in the system.Two simulations are implemented which verify the higher robustness of the system and the better performance of the 3D reconstruction for the radar target with unknown relative motion.
基金Under the auspices of National Natural Science Foundation of China(No.42071385)National Science and Technology Major Project of High Resolution Earth Observation System(No.79-Y50-G18-9001-22/23)。
文摘Automatically detecting Ulva prolifera(U.prolifera)in rainy and cloudy weather using remote sensing imagery has been a long-standing problem.Here,we address this challenge by combining high-resolution Synthetic Aperture Radar(SAR)imagery with the machine learning,and detect the U.prolifera of the South Yellow Sea of China(SYS)in 2021.The findings indicate that the Random Forest model can accurately and robustly detect U.prolifera,even in the presence of complex ocean backgrounds and speckle noise.Visual inspection confirmed that the method successfully identified the majority of pixels containing U.prolifera without misidentifying noise pixels or seawater pixels as U.prolifera.Additionally,the method demonstrated consistent performance across different im-ages,with an average Area Under Curve(AUC)of 0.930(+0.028).The analysis yielded an overall accuracy of over 96%,with an average Kappa coefficient of 0.941(+0.038).Compared to the traditional thresholding method,Random Forest model has a lower estimation error of 14.81%.Practical application indicates that this method can be used in the detection of unprecedented U.prolifera in 2021 to derive continuous spatiotemporal changes.This study provides a potential new method to detect U.prolifera and enhances our under-standing of macroalgal outbreaks in the marine environment.