A jungle is full of life.You can sometimes see exhibits of jungle animals and learn about them.Monkeys play in jungle trees.Colorful parrots fly and call to one another.Black and orange tigers hunt under the trees.
Advancements in molecular approaches have been utilized to breed crops with a wide range of economically valuable traits to develop superior cultivars.This review provides a concise overview of modern breakthroughs in...Advancements in molecular approaches have been utilized to breed crops with a wide range of economically valuable traits to develop superior cultivars.This review provides a concise overview of modern breakthroughs in molecular plant production.Genotyping and high-throughput phenotyping methods for predictive plant breeding are briefly discussed.In this study,we explore contemporary molecular breeding techniques for producing desirable crop varieties.These techniques include cisgenesis,clustered regularly interspaced short palindromic repeat(CRISPR/Cas9)gene editing,haploid induction,and de novo domestication.We examine the speed breeding approach-a strategy for cultivating plants under controlled conditions.We further highlight the significance of modern breeding technologies in efficiently utilizing agricultural resources for crop production in urban areas.The deciphering of crop genomes has led to the development of extensive DNA markers,quantitative trait loci(QTLs),and pangenomes associated with various desirable crop traits.This shift to the genotypic selection of crops considerably expedites the plant breeding process.Based on the plant population used,the connection between genotypic and phenotypic data provides several genetic elements,including genes,markers,and alleles that can be used in genomic breeding and gene editing.The integration of speed breeding with genomic-assisted breeding and cutting-edge genome editing tools has made it feasible to rapidly manipulate and generate multiple crop cycles and accelerate the plant breeding process.Breakthroughs in molecular techniques have led to substantial improvements in modern breeding methods.展开更多
Unlike other major crops,little research has been performed on tomato to reduce the generation time for speed breeding.We evaluated several agronomic treatments to reduce the generation time of tomato in the‘M82'...Unlike other major crops,little research has been performed on tomato to reduce the generation time for speed breeding.We evaluated several agronomic treatments to reduce the generation time of tomato in the‘M82'(determinate)and‘Moneymaker'(indeterminate)varieties and evaluated the best combination in conjunction with embryo rescue.Five container sizes with volumes of 0.2 L(XS),0.45 L(S),0.8 L(M),1.3 L(L),and6 L(XL),were evaluated in the first experiment under the autumn cycle.We found that plants grown in XL containers exhibited better development and required less time from sowing to anthesis(DSA)and from anthesis to fruit ripening(DAR).In the second experiment,using XL containers in the autumn-winter cycle,we evaluated the effects of cold priming at the cotyledonary stage,water stress,P supplementation,and K supplementation on generation time.Compared to the control,we found that cold priming significantly reduced the number of leaves,plant height to first the inflorescence,and DSA(2.7 d),whereas K supplementation reduced the DAR(8.8 d).In contrast,water stress and P supplementation did not significantly affect any of the measured traits like DAR,DSA or fruit set.To validate these data,in a third experiment with XL containers in the spring-summer cycle,the combination of cold priming and K supplementation was tested,confirming the significant effect of this combination on the reduction of generation time(2.9 d for DSA and 3.9 d for DAR)compared to the control.Embryo rescue during the cell expansion cycle(average of 22.0 d and 23.3 d after anthesis for‘M82'and‘Moneymaker',respectively)allowed the shortening of the generation time by 8.7 d in‘M82'and 11.6 d in‘Moneymaker'compared to the in planta fruit ripening.The combination of agronomic treatments with embryo rescue can effectively increase the number of generations per year from three to four for speed breeding of tomato.展开更多
As large-scale genomic studies have progressed,it has been revealed that a single reference genome pattern cannot represent genetic diversity at the species level.While domestic animals tend to have complex routes of ...As large-scale genomic studies have progressed,it has been revealed that a single reference genome pattern cannot represent genetic diversity at the species level.While domestic animals tend to have complex routes of origin and migration,suggesting a possible omission of some population-specific sequences in the current reference genome.Conversely,the pangenome is a collection of all DNA sequences of a species that contains sequences shared by all individuals(core genome)and is also able to display sequence information unique to each individual(variable genome).The progress of pangenome research in humans,plants and domestic animals has proved that the missing genetic components and the identification of large structural variants(SVs)can be explored through pangenomic studies.Many individual specific sequences have been shown to be related to biological adaptability,phenotype and important economic traits.The maturity of technologies and methods such as third-generation sequencing,Tel-omere-to-telomere genomes,graphic genomes,and reference-free assembly will further promote the development of pangenome.In the future,pangenome combined with long-read data and multi-omics will help to resolve large SVs and their relationship with the main economic traits of interest in domesticated animals,providing better insights into animal domestication,evolution and breeding.In this review,we mainly discuss how pangenome analysis reveals genetic variations in domestic animals(sheep,cattle,pigs,chickens)and their impacts on phenotypes and how this can contribute to the understanding of species diversity.Additionally,we also go through potential issues and the future perspectives of pangenome research in livestock and poultry.展开更多
Meat and milk production needs to increase ~ 70–80% relative to its current levels for satisfying the human needs in 2050.However,it is impossible to achieve such genetic gain by conventional animal breeding systems...Meat and milk production needs to increase ~ 70–80% relative to its current levels for satisfying the human needs in 2050.However,it is impossible to achieve such genetic gain by conventional animal breeding systems.Based on recent advances with regard to in vitro induction of germ cell from pluripotent stem cells,herein we propose a novel embryo-stem cell breeding system.Distinct from the conventional breeding system in farm animals that involves selecting and mating individuals,the novel breeding system completes breeding cycles from parental to offspring embryos directly by selecting and mating embryos in a dish.In comparison to the conventional dairy breeding scheme,this system can rapidly achieve 30–40 times more genetic gain by significantly shortening generation interval and enhancing selection intensity.However,several major obstacles must be overcome before we can fully use this system in livestock breeding,which include derivation and mantaince of pluripotent stem cells in domestic animals,as well as in vitro induction of primordial germ cells,and subsequent haploid gametes.Thus,we also discuss the potential efforts needed in solving the obstacles for application this novel system,and elaborate on their groundbreaking potential in livestock breeding.This novel system would provide a revolutionary animal breeding system by offering an unprecedented opportunity for meeting the fast-growing meat and milk demand of humans.展开更多
Several computer packages have been developed to accomplish improved programs for animal breeding and genetic selection. This paper described most of the currant software and provided suggestions for improved software...Several computer packages have been developed to accomplish improved programs for animal breeding and genetic selection. This paper described most of the currant software and provided suggestions for improved software. Khon Kaen University, Thailand, will provide free of charge the new software developed at Khon Kaen University by the author of this paper. The contact for requesting the software is listed: monchai@kku.ac.th.展开更多
Parkinson’s disease is chara cterized by the loss of dopaminergic neurons in the substantia nigra pars com pacta,and although restoring striatal dopamine levels may improve symptoms,no treatment can cure or reve rse ...Parkinson’s disease is chara cterized by the loss of dopaminergic neurons in the substantia nigra pars com pacta,and although restoring striatal dopamine levels may improve symptoms,no treatment can cure or reve rse the disease itself.Stem cell therapy has a regenerative effect and is being actively studied as a candidate for the treatment of Parkinson’s disease.Mesenchymal stem cells are considered a promising option due to fewer ethical concerns,a lower risk of immune rejection,and a lower risk of teratogenicity.We performed a meta-analysis to evaluate the therapeutic effects of mesenchymal stem cells and their derivatives on motor function,memory,and preservation of dopamine rgic neurons in a Parkinson’s disease animal model.We searched bibliographic databases(PubMed/MEDLINE,Embase,CENTRAL,Scopus,and Web of Science)to identify articles and included only pee r-reviewed in vivo interve ntional animal studies published in any language through J une 28,2023.The study utilized the random-effect model to estimate the 95%confidence intervals(CI)of the standard mean differences(SMD)between the treatment and control groups.We use the systematic review center for laboratory animal expe rimentation’s risk of bias tool and the collaborative approach to meta-analysis and review of animal studies checklist for study quality assessment.A total of 33studies with data from 840 Parkinson’s disease model animals were included in the meta-analysis.Treatment with mesenchymal stem cells significantly improved motor function as assessed by the amphetamine-induced rotational test.Among the stem cell types,the bone marrow MSCs with neurotrophic factor group showed la rgest effect size(SMD[95%CI]=-6.21[-9.50 to-2.93],P=0.0001,I^(2)=0.0%).The stem cell treatment group had significantly more tyrosine hydroxylase positive dopamine rgic neurons in the striatum([95%CI]=1.04[0.59 to 1.49],P=0.0001,I^(2)=65.1%)and substantia nigra(SMD[95%CI]=1.38[0.89 to 1.87],P=0.0001,I^(2)=75.3%),indicating a protective effect on dopaminergic neurons.Subgroup analysis of the amphetamine-induced rotation test showed a significant reduction only in the intracranial-striatum route(SMD[95%CI]=-2.59[-3.25 to-1.94],P=0.0001,I^(2)=74.4%).The memory test showed significant improvement only in the intravenous route(SMD[95%CI]=4.80[1.84 to 7.76],P=0.027,I^(2)=79.6%).Mesenchymal stem cells have been shown to positively impact motor function and memory function and protect dopaminergic neurons in preclinical models of Parkinson’s disease.Further research is required to determine the optimal stem cell types,modifications,transplanted cell numbe rs,and delivery methods for these protocols.展开更多
The yield potential of rice is seriously affected by heat stress due to climate change. Since rice is a staple food globally, it is imperative to develop heat-resistant rice varieties. Thus, a thorough understanding o...The yield potential of rice is seriously affected by heat stress due to climate change. Since rice is a staple food globally, it is imperative to develop heat-resistant rice varieties. Thus, a thorough understanding of the complex molecular mechanisms underlying heat tolerance and the impact of high temperatures on various critical stages of the crop is needed. Adoption of both conventional and innovative breeding strategies offers a long-term advantage over other methods, such as agronomic practices, to counter heat stress. In this review, we summarize the effects of heat stress, regulatory pathways for heat tolerance, phenotyping strategies, and various breeding methods available for developing heat-tolerant rice. We offer perspectives and knowledge to guide future research endeavors aimed at enhancing the ability of rice to withstand heat stress and ultimately benefit humanity.展开更多
Background:Knee osteoarthritis(KOA)characterized by degeneration of knee cartilage and subsequent bone hyperplasia is a prevalent joint condition primarily affecting aging adults.The pathophysiology of KOA remains poo...Background:Knee osteoarthritis(KOA)characterized by degeneration of knee cartilage and subsequent bone hyperplasia is a prevalent joint condition primarily affecting aging adults.The pathophysiology of KOA remains poorly understood,as it involves complex mechanisms that result in the same outcome.Consequently,researchers are interested in studying KOA and require appropriate animal models for basic research.Chinese herbal compounds,which consist of multiple herbs with diverse pharmacological properties,possess characteristics such as multicomponent,multipathway,and multitarget effects.The potential benefits in the treatment of KOA continue to attract attention.Purpose:This study aims to provide a comprehensive overview of the advantages,limitations,and specific considerations in selecting different species and methods for KOA animal models.This will help researchers make informed decisions when choosing an animal model.Methods:Online academic databases(e.g.,PubMed,Google Scholar,Web of Science,and CNKI)were searched using the search terms“knee osteoarthritis,”“animal models,”“traditional Chinese medicine,”and their combinations,primarily including KOA studies published from 2010 to 2023.Results:Based on literature retrieval,this review provides a comprehensive overview of the methods of establishing KOA animal models;introduces the current status of advantages and disadvantages of various animal models,including mice,rats,rabbits,dogs,and sheep/goats;and presents the current status of methods used to establish KOA animal models.Conclusion:This study provides a review of the animal models used in recent KOA research,discusses the common modeling methods,and emphasizes the role of traditional Chinese medicine compounds in the treatment of KOA.展开更多
With the increasing material living standards of the people,keeping pets has become a way for people to enjoy amateur life,and the tort problem of breeding animals has also been accompanied.This article will discuss t...With the increasing material living standards of the people,keeping pets has become a way for people to enjoy amateur life,and the tort problem of breeding animals has also been accompanied.This article will discuss the tort liability of breeding animals from the aspects of the characteristics,the principle of imputation,and the constitutive elements.展开更多
Wheat germplasm is a fundamental resource for basic research,applied studies,and wheat breeding,which can be enriched normally by several paths,such as collecting natural lines,accumulating breeding lines,and introduc...Wheat germplasm is a fundamental resource for basic research,applied studies,and wheat breeding,which can be enriched normally by several paths,such as collecting natural lines,accumulating breeding lines,and introducing mutagenesis materials.Ethyl methane sulfonate(EMS)is an alkylating agent that can effectively introduce genetic variations in a wide variety of plant species.In this study,we created a million-scale EMS population(MEP)that started with the Chinese wheat cultivars‘Luyan 128’,‘Jimai 38’,‘Jimai 44’,and‘Shannong 30’.In the M1 generation,the MEP had numerous phenotypical variations,such as>3,000 chlorophyll-deficient mutants,2,519 compact spikes,and 1,692 male sterile spikes.There were also rare mutations,including 30 independent tillers each with double heads.Some M1 variations of chlorophyll-deficiency and compact spikes were inheritable,appearing in the M2 or M3 generations.To advance the entire MEP to higher generations,we adopted a single-seed descendent(SSD)approach.All other seed composites of M2 were used to screen other agronomically important traits,such as the tolerance to herbicide quizalofop-P-methyl.The MEP is available for collaborative projects,and provides a valuable toolbox for wheat genetics and breeding for sustainable agriculture.展开更多
In order to reveal the immune antibody levels and immune effect of livestock and poultry in the locality,we performed antibody surveillance on severe animal diseases in 17 livestock and poultry fields in six administr...In order to reveal the immune antibody levels and immune effect of livestock and poultry in the locality,we performed antibody surveillance on severe animal diseases in 17 livestock and poultry fields in six administrative districts of Wuhan City. The results showed that the vaccines had a good protective efficacy on highly pathogenic avian influenza( HPAI) and Newcastle disease( ND) in Wuhan City. The whole antibody levels kept above the ministerial standard( 】 70%).However,the vaccine immunity of porcine reproductive and respiratory syndrome( PRRS),swine fever( SF) and foot and mouth disease( FMD) was still poorly protective. The data indicated that the vaccines are protecting the severe animal diseases well,but there are still some potential security holes in some administrative districts.展开更多
This study investigates the variations of microcystins(MCs)in water,cyanobacterial blooms,sediment,and aquatic organisms collected from the Dau Tieng Reservoir(DTR).Vietnam.Highperformance liquid chromatography(HPLC)w...This study investigates the variations of microcystins(MCs)in water,cyanobacterial blooms,sediment,and aquatic organisms collected from the Dau Tieng Reservoir(DTR).Vietnam.Highperformance liquid chromatography(HPLC)was employed to measure MC concentrations in various target samples.Results indicate that Microcystis spp.dominates as the primary MC producer in the DTR.The average concentrations of analyzed MCs in surface water ranged from 1.10 to 5.54μg/L,temporally and spatially.In sediment,average concentrations varied from 0.15 to 1.13μg/g wet weight(WW)temporally and from 0.41 to 0.72μg/g WW spatially.MCs were detected in different organs of fish species(Oreochromis sp.and Labiobarbus sp.)and in the entire soft tissues of bivalve(Corbicula sp.)and gastropod(Assiminea sp.).The highest observed MC concentration in July was 0.83±0.22μg/g WW in the intestines of fish Oreochromis sp.The presence of MCs in grass shrimp Palaemonetes sp.was observed solely in June,reaching a concentration of 0.28±0.19μg/g WW.This is the first report of MC accumulation in the grass shrimp Palaemonetes sp.during field collection.For the bivalve Corbicula sp.,the presence of analyzed MCs was consistent throughout the study period,except for March and September,with the highest concentrations in July at 0.77±0.1μg/g WW.Pearson correlation analysis revealed significant positive correlations between MCs in water and sediment with MC concentrations in aquatic animals,indicating the potential transfer of MCs across different trophic levels.The estimated daily intake values for analyzed MCs indicate that fish collected from the DTR are considered safe for consumption,as long as only the edible organs,such as the muscle,are consumed.However,bivalves or gastropods collected from the DTR are not safe for human consumption.This study underscored the importance of monitoring MC accumulation in aquatic animals used as food to mitigate adverse effects on human health.展开更多
The distribution of the immune system throughout the body complicates in vitro assessments of coronavirus disease 2019(COVID-19)immunobiology,often resulting in a lack of reproducibility when extrapolated to the whole...The distribution of the immune system throughout the body complicates in vitro assessments of coronavirus disease 2019(COVID-19)immunobiology,often resulting in a lack of reproducibility when extrapolated to the whole organism.Consequently,developing animal models is imperative for a comprehensive understanding of the pathology and immunology of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)infection.This review summarizes current progress related to COVID-19 animal models,including non-human primates(NHPs),mice,and hamsters,with a focus on their roles in exploring the mechanisms of immunopathology,immune protection,and long-term effects of SARS-CoV-2 infection,as well as their application in immunoprevention and immunotherapy of SARS-CoV-2 infection.Differences among these animal models and their specific applications are also highlighted,as no single model can fully encapsulate all aspects of COVID-19.To effectively address the challenges posed by COVID-19,it is essential to select appropriate animal models that can accurately replicate both fatal and non-fatal infections with varying courses and severities.Optimizing animal model libraries and associated research tools is key to resolving the global COVID-19 pandemic,serving as a robust resource for future emerging infectious diseases.展开更多
Hereditary hearing loss(HHL),a genetic disorder that impairs auditory function,significantly affects quality of life and incurs substantial economic losses for society.To investigate the underlying causes of HHL and e...Hereditary hearing loss(HHL),a genetic disorder that impairs auditory function,significantly affects quality of life and incurs substantial economic losses for society.To investigate the underlying causes of HHL and evaluate therapeutic outcomes,appropriate animal models are necessary.Pigs have been extensively used as valuable large animal models in biomedical research.In this review,we highlight the advantages of pig models in terms of ear anatomy,inner ear morphology,and electrophysiological characteristics,as well as recent advancements in the development of distinct genetically modified porcine models of hearing loss.Additionally,we discuss the prospects,challenges,and recommendations regarding the use pig models in HHL research.Overall,this review provides insights and perspectives for future studies on HHL using porcine models.展开更多
Huntington'sdisease(HD)isahereditary neurodegenerative disorder for which there is currently no effectivetreatmentavailable.Consequently,the development of appropriate disease models is critical to thoroughly inve...Huntington'sdisease(HD)isahereditary neurodegenerative disorder for which there is currently no effectivetreatmentavailable.Consequently,the development of appropriate disease models is critical to thoroughly investigate disease progression.The genetic basis of HD involves the abnormal expansion of CAG repeats in the huntingtin(HTT)gene,leading to the expansion of a polyglutamine repeat in the HTT protein.Mutant HTT carrying the expanded polyglutamine repeat undergoes misfolding and forms aggregates in the brain,which precipitate selective neuronal loss in specific brain regions.Animal models play an important role in elucidating the pathogenesis of neurodegenerative disorders such as HD and in identifying potential therapeutic targets.Due to the marked species differences between rodents and larger animals,substantial efforts have been directed toward establishing large animal models for HD research.These models are pivotal for advancing the discovery of novel therapeutic targets,enhancing effective drug delivery methods,and improving treatment outcomes.We have explored the advantages of utilizing large animal models,particularly pigs,in previous reviews.Since then,however,significant progress has been made in developing more sophisticated animal models that faithfully replicate the typical pathology of HD.In the current review,we provide a comprehensive overview of large animal models of HD,incorporating recent findings regarding the establishment of HD knock-in(KI)pigs and their genetic therapy.We also explore the utilization of large animal models in HD research,with a focus on sheep,non-human primates(NHPs),and pigs.Our objective is to provide valuable insights into the application of these large animal models for the investigation and treatment of neurodegenerative disorders.展开更多
Animal models are extensively used in all aspects of biomedical research,with substantial contributions to our understanding of diseases,the development of pharmaceuticals,and the exploration of gene functions.The fie...Animal models are extensively used in all aspects of biomedical research,with substantial contributions to our understanding of diseases,the development of pharmaceuticals,and the exploration of gene functions.The field of genome modification in rabbits has progressed slowly.However,recent advancements,particularly in CRISPR/Cas9-related technologies,have catalyzed the successful development of various genome-edited rabbit models to mimic diverse diseases,including cardiovascular disorders,immunodeficiencies,agingrelated ailments,neurological diseases,and ophthalmic pathologies.These models hold great promise in advancing biomedical research due to their closer physiological and biochemical resemblance to humans compared to mice.This review aims to summarize the novel gene-editing approaches currently available for rabbits and present the applications and prospects of such models in biomedicine,underscoring their impact and future potential in translational medicine.展开更多
Distraction spinal cord injury is caused by some degree of distraction or longitudinal tension on the spinal cord and commonly occurs in patients who undergo corrective operation for severe spinal deformity.With the i...Distraction spinal cord injury is caused by some degree of distraction or longitudinal tension on the spinal cord and commonly occurs in patients who undergo corrective operation for severe spinal deformity.With the increased degree and duration of distraction,spinal cord injuries become more serious in terms of their neurophysiology,histology,and behavior.Very few studies have been published on the specific characteristics of distraction spinal cord injury.In this study,we systematically review 22 related studies involving animal models of distraction spinal cord injury,focusing particularly on the neurophysiological,histological,and behavioral characteristics of this disease.In addition,we summarize the mechanisms underlying primary and secondary injuries caused by distraction spinal cord injury and clarify the effects of different degrees and durations of distraction on the primary injuries associated with spinal cord injury.We provide new concepts for the establishment of a model of distraction spinal cord injury and related basic research,and provide reference guidelines for the clinical diagnosis and treatment of this disease.展开更多
BACKGROUND Prevalence of hepatocellular carcinoma(HCC)is increasing,especially in patients with metabolic dysfunctionassociated steatotic liver disease(MASLD).AIM To investigate rifaximin(RIF)effects on epigenetic/aut...BACKGROUND Prevalence of hepatocellular carcinoma(HCC)is increasing,especially in patients with metabolic dysfunctionassociated steatotic liver disease(MASLD).AIM To investigate rifaximin(RIF)effects on epigenetic/autophagy markers in animals.METHODS Adult Sprague-Dawley rats were randomly assigned(n=8,each)and treated from 5-16 wk:Control[standard diet,water plus gavage with vehicle(Veh)],HCC[high-fat choline deficient diet(HFCD),diethylnitrosamine(DEN)in drinking water and Veh gavage],and RIF[HFCD,DEN and RIF(50 mg/kg/d)gavage].Gene expression of epigenetic/autophagy markers and circulating miRNAs were obtained.RESULTS All HCC and RIF animals developed metabolic-dysfunction associated steatohepatitis fibrosis,and cirrhosis,but three RIF-group did not develop HCC.Comparing animals who developed HCC with those who did not,miR-122,miR-34a,tubulin alpha-1c(Tuba-1c),metalloproteinases-2(Mmp2),and metalloproteinases-9(Mmp9)were significantly higher in the HCC-group.The opposite occurred with Becn1,coactivator associated arginine methyltransferase-1(Carm1),enhancer of zeste homolog-2(Ezh2),autophagy-related factor LC3A/B(Map1 Lc3b),and p62/sequestosome-1(p62/SQSTM1)-protein.Comparing with controls,Map1 Lc3b,Becn1 and Ezh2 were lower in HCC and RIF-groups(P<0.05).Carm1 was lower in HCC compared to RIF(P<0.05).Hepatic expression of Mmp9 was higher in HCC in relation to the control;the opposite was observed for p62/Sqstm1(P<0.05).Expression of p62/SQSTM1 protein was lower in the RIF-group compared to the control(P=0.024).There was no difference among groups for Tuba-1c,Aldolase-B,alpha-fetoprotein,and Mmp2(P>0.05).miR-122 was higher in HCC,and miR-34a in RIF compared to controls(P<0.05).miR-26b was lower in HCC compared to RIF,and the inverse was observed for miR-224(P<0.05).There was no difference among groups regarding miR-33a,miR-143,miR-155,miR-375 and miR-21(P>0.05).CONCLUSION RIF might have a possible beneficial effect on preventing/delaying liver carcinogenesis through epigenetic modulation in a rat model of MASLD-HCC.展开更多
文摘A jungle is full of life.You can sometimes see exhibits of jungle animals and learn about them.Monkeys play in jungle trees.Colorful parrots fly and call to one another.Black and orange tigers hunt under the trees.
基金funded by the United Arab Emirates UniversityResearch Officegrant number 12F041 to KM。
文摘Advancements in molecular approaches have been utilized to breed crops with a wide range of economically valuable traits to develop superior cultivars.This review provides a concise overview of modern breakthroughs in molecular plant production.Genotyping and high-throughput phenotyping methods for predictive plant breeding are briefly discussed.In this study,we explore contemporary molecular breeding techniques for producing desirable crop varieties.These techniques include cisgenesis,clustered regularly interspaced short palindromic repeat(CRISPR/Cas9)gene editing,haploid induction,and de novo domestication.We examine the speed breeding approach-a strategy for cultivating plants under controlled conditions.We further highlight the significance of modern breeding technologies in efficiently utilizing agricultural resources for crop production in urban areas.The deciphering of crop genomes has led to the development of extensive DNA markers,quantitative trait loci(QTLs),and pangenomes associated with various desirable crop traits.This shift to the genotypic selection of crops considerably expedites the plant breeding process.Based on the plant population used,the connection between genotypic and phenotypic data provides several genetic elements,including genes,markers,and alleles that can be used in genomic breeding and gene editing.The integration of speed breeding with genomic-assisted breeding and cutting-edge genome editing tools has made it feasible to rapidly manipulate and generate multiple crop cycles and accelerate the plant breeding process.Breakthroughs in molecular techniques have led to substantial improvements in modern breeding methods.
基金funded by the European Commission H2020 Research and Innovation Programme through the HARNESSTOM innovation action(Grant No.101000716)Grant CIPROM/2021/020(project SOLECO)funded by Conselleria d’Innovació,Universitats,Ciència i Societat Digital(Generalitat Valenciana,Spain)Pietro Gramazio received a post-doctoral fellowship(Grant No.RYC2021-031999-I)funded by MCIN/AEI/10.13039/501100011033 and by“European Union NextGenerationEU/PRTR”。
文摘Unlike other major crops,little research has been performed on tomato to reduce the generation time for speed breeding.We evaluated several agronomic treatments to reduce the generation time of tomato in the‘M82'(determinate)and‘Moneymaker'(indeterminate)varieties and evaluated the best combination in conjunction with embryo rescue.Five container sizes with volumes of 0.2 L(XS),0.45 L(S),0.8 L(M),1.3 L(L),and6 L(XL),were evaluated in the first experiment under the autumn cycle.We found that plants grown in XL containers exhibited better development and required less time from sowing to anthesis(DSA)and from anthesis to fruit ripening(DAR).In the second experiment,using XL containers in the autumn-winter cycle,we evaluated the effects of cold priming at the cotyledonary stage,water stress,P supplementation,and K supplementation on generation time.Compared to the control,we found that cold priming significantly reduced the number of leaves,plant height to first the inflorescence,and DSA(2.7 d),whereas K supplementation reduced the DAR(8.8 d).In contrast,water stress and P supplementation did not significantly affect any of the measured traits like DAR,DSA or fruit set.To validate these data,in a third experiment with XL containers in the spring-summer cycle,the combination of cold priming and K supplementation was tested,confirming the significant effect of this combination on the reduction of generation time(2.9 d for DSA and 3.9 d for DAR)compared to the control.Embryo rescue during the cell expansion cycle(average of 22.0 d and 23.3 d after anthesis for‘M82'and‘Moneymaker',respectively)allowed the shortening of the generation time by 8.7 d in‘M82'and 11.6 d in‘Moneymaker'compared to the in planta fruit ripening.The combination of agronomic treatments with embryo rescue can effectively increase the number of generations per year from three to four for speed breeding of tomato.
基金supported by the National Natural Science Foundation of China (grant numbers 31961143021)the earmarked fund for Modern Agro-industry Technology Research System (grant numbers CARS-39-01)+1 种基金the Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences (grant numbers ASTIP-IAS01) to YM and LJsupported by the Elite Youth Program in Chinese Academy of Agricultural Sciences
文摘As large-scale genomic studies have progressed,it has been revealed that a single reference genome pattern cannot represent genetic diversity at the species level.While domestic animals tend to have complex routes of origin and migration,suggesting a possible omission of some population-specific sequences in the current reference genome.Conversely,the pangenome is a collection of all DNA sequences of a species that contains sequences shared by all individuals(core genome)and is also able to display sequence information unique to each individual(variable genome).The progress of pangenome research in humans,plants and domestic animals has proved that the missing genetic components and the identification of large structural variants(SVs)can be explored through pangenomic studies.Many individual specific sequences have been shown to be related to biological adaptability,phenotype and important economic traits.The maturity of technologies and methods such as third-generation sequencing,Tel-omere-to-telomere genomes,graphic genomes,and reference-free assembly will further promote the development of pangenome.In the future,pangenome combined with long-read data and multi-omics will help to resolve large SVs and their relationship with the main economic traits of interest in domesticated animals,providing better insights into animal domestication,evolution and breeding.In this review,we mainly discuss how pangenome analysis reveals genetic variations in domestic animals(sheep,cattle,pigs,chickens)and their impacts on phenotypes and how this can contribute to the understanding of species diversity.Additionally,we also go through potential issues and the future perspectives of pangenome research in livestock and poultry.
基金supported by Strategy Research on Disruptive Technology in Agriculture(China Academy of Engineering,2017-ZD-10-07)supported by grants from the National Key R&D Program(2017YFD0501901+1 种基金2017YFD0501905)the Earmarked Fund for the Innovative Teams of Beijing Swine Industrialization Research Program.National Waterfowl-industry Technology Research System(CARS-42)
文摘Meat and milk production needs to increase ~ 70–80% relative to its current levels for satisfying the human needs in 2050.However,it is impossible to achieve such genetic gain by conventional animal breeding systems.Based on recent advances with regard to in vitro induction of germ cell from pluripotent stem cells,herein we propose a novel embryo-stem cell breeding system.Distinct from the conventional breeding system in farm animals that involves selecting and mating individuals,the novel breeding system completes breeding cycles from parental to offspring embryos directly by selecting and mating embryos in a dish.In comparison to the conventional dairy breeding scheme,this system can rapidly achieve 30–40 times more genetic gain by significantly shortening generation interval and enhancing selection intensity.However,several major obstacles must be overcome before we can fully use this system in livestock breeding,which include derivation and mantaince of pluripotent stem cells in domestic animals,as well as in vitro induction of primordial germ cells,and subsequent haploid gametes.Thus,we also discuss the potential efforts needed in solving the obstacles for application this novel system,and elaborate on their groundbreaking potential in livestock breeding.This novel system would provide a revolutionary animal breeding system by offering an unprecedented opportunity for meeting the fast-growing meat and milk demand of humans.
文摘Several computer packages have been developed to accomplish improved programs for animal breeding and genetic selection. This paper described most of the currant software and provided suggestions for improved software. Khon Kaen University, Thailand, will provide free of charge the new software developed at Khon Kaen University by the author of this paper. The contact for requesting the software is listed: monchai@kku.ac.th.
文摘Parkinson’s disease is chara cterized by the loss of dopaminergic neurons in the substantia nigra pars com pacta,and although restoring striatal dopamine levels may improve symptoms,no treatment can cure or reve rse the disease itself.Stem cell therapy has a regenerative effect and is being actively studied as a candidate for the treatment of Parkinson’s disease.Mesenchymal stem cells are considered a promising option due to fewer ethical concerns,a lower risk of immune rejection,and a lower risk of teratogenicity.We performed a meta-analysis to evaluate the therapeutic effects of mesenchymal stem cells and their derivatives on motor function,memory,and preservation of dopamine rgic neurons in a Parkinson’s disease animal model.We searched bibliographic databases(PubMed/MEDLINE,Embase,CENTRAL,Scopus,and Web of Science)to identify articles and included only pee r-reviewed in vivo interve ntional animal studies published in any language through J une 28,2023.The study utilized the random-effect model to estimate the 95%confidence intervals(CI)of the standard mean differences(SMD)between the treatment and control groups.We use the systematic review center for laboratory animal expe rimentation’s risk of bias tool and the collaborative approach to meta-analysis and review of animal studies checklist for study quality assessment.A total of 33studies with data from 840 Parkinson’s disease model animals were included in the meta-analysis.Treatment with mesenchymal stem cells significantly improved motor function as assessed by the amphetamine-induced rotational test.Among the stem cell types,the bone marrow MSCs with neurotrophic factor group showed la rgest effect size(SMD[95%CI]=-6.21[-9.50 to-2.93],P=0.0001,I^(2)=0.0%).The stem cell treatment group had significantly more tyrosine hydroxylase positive dopamine rgic neurons in the striatum([95%CI]=1.04[0.59 to 1.49],P=0.0001,I^(2)=65.1%)and substantia nigra(SMD[95%CI]=1.38[0.89 to 1.87],P=0.0001,I^(2)=75.3%),indicating a protective effect on dopaminergic neurons.Subgroup analysis of the amphetamine-induced rotation test showed a significant reduction only in the intracranial-striatum route(SMD[95%CI]=-2.59[-3.25 to-1.94],P=0.0001,I^(2)=74.4%).The memory test showed significant improvement only in the intravenous route(SMD[95%CI]=4.80[1.84 to 7.76],P=0.027,I^(2)=79.6%).Mesenchymal stem cells have been shown to positively impact motor function and memory function and protect dopaminergic neurons in preclinical models of Parkinson’s disease.Further research is required to determine the optimal stem cell types,modifications,transplanted cell numbe rs,and delivery methods for these protocols.
文摘The yield potential of rice is seriously affected by heat stress due to climate change. Since rice is a staple food globally, it is imperative to develop heat-resistant rice varieties. Thus, a thorough understanding of the complex molecular mechanisms underlying heat tolerance and the impact of high temperatures on various critical stages of the crop is needed. Adoption of both conventional and innovative breeding strategies offers a long-term advantage over other methods, such as agronomic practices, to counter heat stress. In this review, we summarize the effects of heat stress, regulatory pathways for heat tolerance, phenotyping strategies, and various breeding methods available for developing heat-tolerant rice. We offer perspectives and knowledge to guide future research endeavors aimed at enhancing the ability of rice to withstand heat stress and ultimately benefit humanity.
基金supported by the Cutting Edge Development Fund of Advanced Medical Research Institute(GYY2023QY01)the China Postdoctoral Science Foundation(certificate number:2023M732093)。
文摘Background:Knee osteoarthritis(KOA)characterized by degeneration of knee cartilage and subsequent bone hyperplasia is a prevalent joint condition primarily affecting aging adults.The pathophysiology of KOA remains poorly understood,as it involves complex mechanisms that result in the same outcome.Consequently,researchers are interested in studying KOA and require appropriate animal models for basic research.Chinese herbal compounds,which consist of multiple herbs with diverse pharmacological properties,possess characteristics such as multicomponent,multipathway,and multitarget effects.The potential benefits in the treatment of KOA continue to attract attention.Purpose:This study aims to provide a comprehensive overview of the advantages,limitations,and specific considerations in selecting different species and methods for KOA animal models.This will help researchers make informed decisions when choosing an animal model.Methods:Online academic databases(e.g.,PubMed,Google Scholar,Web of Science,and CNKI)were searched using the search terms“knee osteoarthritis,”“animal models,”“traditional Chinese medicine,”and their combinations,primarily including KOA studies published from 2010 to 2023.Results:Based on literature retrieval,this review provides a comprehensive overview of the methods of establishing KOA animal models;introduces the current status of advantages and disadvantages of various animal models,including mice,rats,rabbits,dogs,and sheep/goats;and presents the current status of methods used to establish KOA animal models.Conclusion:This study provides a review of the animal models used in recent KOA research,discusses the common modeling methods,and emphasizes the role of traditional Chinese medicine compounds in the treatment of KOA.
文摘With the increasing material living standards of the people,keeping pets has become a way for people to enjoy amateur life,and the tort problem of breeding animals has also been accompanied.This article will discuss the tort liability of breeding animals from the aspects of the characteristics,the principle of imputation,and the constitutive elements.
基金This work was supported by the National Key Research and Development Program of China(2022YFF1002300)the Quancheng‘5150’Talent Program,China(07962021047)the Agriculture Applied Technology Initiative of Jinan Government,China(CX202113).
文摘Wheat germplasm is a fundamental resource for basic research,applied studies,and wheat breeding,which can be enriched normally by several paths,such as collecting natural lines,accumulating breeding lines,and introducing mutagenesis materials.Ethyl methane sulfonate(EMS)is an alkylating agent that can effectively introduce genetic variations in a wide variety of plant species.In this study,we created a million-scale EMS population(MEP)that started with the Chinese wheat cultivars‘Luyan 128’,‘Jimai 38’,‘Jimai 44’,and‘Shannong 30’.In the M1 generation,the MEP had numerous phenotypical variations,such as>3,000 chlorophyll-deficient mutants,2,519 compact spikes,and 1,692 male sterile spikes.There were also rare mutations,including 30 independent tillers each with double heads.Some M1 variations of chlorophyll-deficiency and compact spikes were inheritable,appearing in the M2 or M3 generations.To advance the entire MEP to higher generations,we adopted a single-seed descendent(SSD)approach.All other seed composites of M2 were used to screen other agronomically important traits,such as the tolerance to herbicide quizalofop-P-methyl.The MEP is available for collaborative projects,and provides a valuable toolbox for wheat genetics and breeding for sustainable agriculture.
基金Supported by High Tech Industry Development Plan of Wuhan City(201220812240-6)
文摘In order to reveal the immune antibody levels and immune effect of livestock and poultry in the locality,we performed antibody surveillance on severe animal diseases in 17 livestock and poultry fields in six administrative districts of Wuhan City. The results showed that the vaccines had a good protective efficacy on highly pathogenic avian influenza( HPAI) and Newcastle disease( ND) in Wuhan City. The whole antibody levels kept above the ministerial standard( 】 70%).However,the vaccine immunity of porcine reproductive and respiratory syndrome( PRRS),swine fever( SF) and foot and mouth disease( FMD) was still poorly protective. The data indicated that the vaccines are protecting the severe animal diseases well,but there are still some potential security holes in some administrative districts.
文摘This study investigates the variations of microcystins(MCs)in water,cyanobacterial blooms,sediment,and aquatic organisms collected from the Dau Tieng Reservoir(DTR).Vietnam.Highperformance liquid chromatography(HPLC)was employed to measure MC concentrations in various target samples.Results indicate that Microcystis spp.dominates as the primary MC producer in the DTR.The average concentrations of analyzed MCs in surface water ranged from 1.10 to 5.54μg/L,temporally and spatially.In sediment,average concentrations varied from 0.15 to 1.13μg/g wet weight(WW)temporally and from 0.41 to 0.72μg/g WW spatially.MCs were detected in different organs of fish species(Oreochromis sp.and Labiobarbus sp.)and in the entire soft tissues of bivalve(Corbicula sp.)and gastropod(Assiminea sp.).The highest observed MC concentration in July was 0.83±0.22μg/g WW in the intestines of fish Oreochromis sp.The presence of MCs in grass shrimp Palaemonetes sp.was observed solely in June,reaching a concentration of 0.28±0.19μg/g WW.This is the first report of MC accumulation in the grass shrimp Palaemonetes sp.during field collection.For the bivalve Corbicula sp.,the presence of analyzed MCs was consistent throughout the study period,except for March and September,with the highest concentrations in July at 0.77±0.1μg/g WW.Pearson correlation analysis revealed significant positive correlations between MCs in water and sediment with MC concentrations in aquatic animals,indicating the potential transfer of MCs across different trophic levels.The estimated daily intake values for analyzed MCs indicate that fish collected from the DTR are considered safe for consumption,as long as only the edible organs,such as the muscle,are consumed.However,bivalves or gastropods collected from the DTR are not safe for human consumption.This study underscored the importance of monitoring MC accumulation in aquatic animals used as food to mitigate adverse effects on human health.
基金National Key Research and Development Program of China(2022YFC2303700,2021YFC2301300)Yunnan Key Research and Development Program(202303AC100026)+2 种基金National Natural Science Foundation of China(82302002,82341069)Yunnan Fundamental Research Project(202201AS070047)Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0490000)。
文摘The distribution of the immune system throughout the body complicates in vitro assessments of coronavirus disease 2019(COVID-19)immunobiology,often resulting in a lack of reproducibility when extrapolated to the whole organism.Consequently,developing animal models is imperative for a comprehensive understanding of the pathology and immunology of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)infection.This review summarizes current progress related to COVID-19 animal models,including non-human primates(NHPs),mice,and hamsters,with a focus on their roles in exploring the mechanisms of immunopathology,immune protection,and long-term effects of SARS-CoV-2 infection,as well as their application in immunoprevention and immunotherapy of SARS-CoV-2 infection.Differences among these animal models and their specific applications are also highlighted,as no single model can fully encapsulate all aspects of COVID-19.To effectively address the challenges posed by COVID-19,it is essential to select appropriate animal models that can accurately replicate both fatal and non-fatal infections with varying courses and severities.Optimizing animal model libraries and associated research tools is key to resolving the global COVID-19 pandemic,serving as a robust resource for future emerging infectious diseases.
基金supported by the National Key Research and Development Program of China (2021YFA0805902,2022YFF0710703)National Natural Science Foundation of China (32201257)+1 种基金Science and Technology Innovation Project of Xiongan New Area (2022XAGG0121)Young Elite Scientists Sponsorship Program by the China Association for Science and Technology (2019QNRC001)。
文摘Hereditary hearing loss(HHL),a genetic disorder that impairs auditory function,significantly affects quality of life and incurs substantial economic losses for society.To investigate the underlying causes of HHL and evaluate therapeutic outcomes,appropriate animal models are necessary.Pigs have been extensively used as valuable large animal models in biomedical research.In this review,we highlight the advantages of pig models in terms of ear anatomy,inner ear morphology,and electrophysiological characteristics,as well as recent advancements in the development of distinct genetically modified porcine models of hearing loss.Additionally,we discuss the prospects,challenges,and recommendations regarding the use pig models in HHL research.Overall,this review provides insights and perspectives for future studies on HHL using porcine models.
基金supported by the National Key Research and Development Program of China (2021YFA0805300,2021YFA0805200)National Natural Science Foundation of China (32170981,82371874,82394422,82171244,82071421,82271902)+1 种基金Guangzhou Key Research Program on Brain Science (202007030008)Department of Science and Technology of Guangdong Province (2021ZT09Y007,2020B121201006,2018B030337001)。
文摘Huntington'sdisease(HD)isahereditary neurodegenerative disorder for which there is currently no effectivetreatmentavailable.Consequently,the development of appropriate disease models is critical to thoroughly investigate disease progression.The genetic basis of HD involves the abnormal expansion of CAG repeats in the huntingtin(HTT)gene,leading to the expansion of a polyglutamine repeat in the HTT protein.Mutant HTT carrying the expanded polyglutamine repeat undergoes misfolding and forms aggregates in the brain,which precipitate selective neuronal loss in specific brain regions.Animal models play an important role in elucidating the pathogenesis of neurodegenerative disorders such as HD and in identifying potential therapeutic targets.Due to the marked species differences between rodents and larger animals,substantial efforts have been directed toward establishing large animal models for HD research.These models are pivotal for advancing the discovery of novel therapeutic targets,enhancing effective drug delivery methods,and improving treatment outcomes.We have explored the advantages of utilizing large animal models,particularly pigs,in previous reviews.Since then,however,significant progress has been made in developing more sophisticated animal models that faithfully replicate the typical pathology of HD.In the current review,we provide a comprehensive overview of large animal models of HD,incorporating recent findings regarding the establishment of HD knock-in(KI)pigs and their genetic therapy.We also explore the utilization of large animal models in HD research,with a focus on sheep,non-human primates(NHPs),and pigs.Our objective is to provide valuable insights into the application of these large animal models for the investigation and treatment of neurodegenerative disorders.
基金supported by the National Natural Science Foundation of China (31970574)。
文摘Animal models are extensively used in all aspects of biomedical research,with substantial contributions to our understanding of diseases,the development of pharmaceuticals,and the exploration of gene functions.The field of genome modification in rabbits has progressed slowly.However,recent advancements,particularly in CRISPR/Cas9-related technologies,have catalyzed the successful development of various genome-edited rabbit models to mimic diverse diseases,including cardiovascular disorders,immunodeficiencies,agingrelated ailments,neurological diseases,and ophthalmic pathologies.These models hold great promise in advancing biomedical research due to their closer physiological and biochemical resemblance to humans compared to mice.This review aims to summarize the novel gene-editing approaches currently available for rabbits and present the applications and prospects of such models in biomedicine,underscoring their impact and future potential in translational medicine.
基金supported by the National Natural Science Foundation of China,No.81772421(to YH).
文摘Distraction spinal cord injury is caused by some degree of distraction or longitudinal tension on the spinal cord and commonly occurs in patients who undergo corrective operation for severe spinal deformity.With the increased degree and duration of distraction,spinal cord injuries become more serious in terms of their neurophysiology,histology,and behavior.Very few studies have been published on the specific characteristics of distraction spinal cord injury.In this study,we systematically review 22 related studies involving animal models of distraction spinal cord injury,focusing particularly on the neurophysiological,histological,and behavioral characteristics of this disease.In addition,we summarize the mechanisms underlying primary and secondary injuries caused by distraction spinal cord injury and clarify the effects of different degrees and durations of distraction on the primary injuries associated with spinal cord injury.We provide new concepts for the establishment of a model of distraction spinal cord injury and related basic research,and provide reference guidelines for the clinical diagnosis and treatment of this disease.
基金Supported by the following Brazilian funding agencies:Financiamento e IncentivoàPesquisa from Hospital de Clínicas de Porto Alegre(FIPE/HCPA),No.2021-0105(toÁlvares-da-Silva MR)Coordination for the Improvement of Higher Education Personnel,CAPES/PNPDand this study was financed in part by the Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq)(toÁlvares-da-Silva MR).
文摘BACKGROUND Prevalence of hepatocellular carcinoma(HCC)is increasing,especially in patients with metabolic dysfunctionassociated steatotic liver disease(MASLD).AIM To investigate rifaximin(RIF)effects on epigenetic/autophagy markers in animals.METHODS Adult Sprague-Dawley rats were randomly assigned(n=8,each)and treated from 5-16 wk:Control[standard diet,water plus gavage with vehicle(Veh)],HCC[high-fat choline deficient diet(HFCD),diethylnitrosamine(DEN)in drinking water and Veh gavage],and RIF[HFCD,DEN and RIF(50 mg/kg/d)gavage].Gene expression of epigenetic/autophagy markers and circulating miRNAs were obtained.RESULTS All HCC and RIF animals developed metabolic-dysfunction associated steatohepatitis fibrosis,and cirrhosis,but three RIF-group did not develop HCC.Comparing animals who developed HCC with those who did not,miR-122,miR-34a,tubulin alpha-1c(Tuba-1c),metalloproteinases-2(Mmp2),and metalloproteinases-9(Mmp9)were significantly higher in the HCC-group.The opposite occurred with Becn1,coactivator associated arginine methyltransferase-1(Carm1),enhancer of zeste homolog-2(Ezh2),autophagy-related factor LC3A/B(Map1 Lc3b),and p62/sequestosome-1(p62/SQSTM1)-protein.Comparing with controls,Map1 Lc3b,Becn1 and Ezh2 were lower in HCC and RIF-groups(P<0.05).Carm1 was lower in HCC compared to RIF(P<0.05).Hepatic expression of Mmp9 was higher in HCC in relation to the control;the opposite was observed for p62/Sqstm1(P<0.05).Expression of p62/SQSTM1 protein was lower in the RIF-group compared to the control(P=0.024).There was no difference among groups for Tuba-1c,Aldolase-B,alpha-fetoprotein,and Mmp2(P>0.05).miR-122 was higher in HCC,and miR-34a in RIF compared to controls(P<0.05).miR-26b was lower in HCC compared to RIF,and the inverse was observed for miR-224(P<0.05).There was no difference among groups regarding miR-33a,miR-143,miR-155,miR-375 and miR-21(P>0.05).CONCLUSION RIF might have a possible beneficial effect on preventing/delaying liver carcinogenesis through epigenetic modulation in a rat model of MASLD-HCC.