期刊文献+
共找到1,389篇文章
< 1 2 70 >
每页显示 20 50 100
基于ANNs耦合GA算法的煤层含气量预判
1
作者 贾宝山 尹彬 《华中师范大学学报(自然科学版)》 CAS 北大核心 2015年第5期715-721,共7页
为了对煤层含气量进行有效分析,以实现煤层气可靠抽采及瓦斯灾害预防,提出了遗传算法(GA)优化人工神经网络(ANNs)煤层含气量的预判方法.GA算法通过对ANNs网络的权值及阈值的寻优,构建了基于ANNs耦合GA算法的煤层含气量非线性预判模型,... 为了对煤层含气量进行有效分析,以实现煤层气可靠抽采及瓦斯灾害预防,提出了遗传算法(GA)优化人工神经网络(ANNs)煤层含气量的预判方法.GA算法通过对ANNs网络的权值及阈值的寻优,构建了基于ANNs耦合GA算法的煤层含气量非线性预判模型,并结合现场实测数据进行了分析.仿真结果显示:耦合模型的预判的最大相对误差为1.47%,较之其他模型具有更高的预判精度和更好的泛化能力,能实现煤层含气量的有效预测. 展开更多
关键词 神经网络(anns) 遗传算法(GA) 耦合模型 煤层含气量
下载PDF
利用ANNS的空间信息处理服务智能集成算法
2
作者 赵欣 《信息技术与信息化》 2015年第9期258-259,共2页
ANNS,即人工神经网络因其自身对非线性复杂关系的逼近和基于网络神经元的信息鲁棒性与容错性近年来被广泛应用在社会生产、生活的多个领域,特别是网络信息技术领域。为了进一步提高网络数据资源的利用效率,通过对ANNS的服务语义和匹配... ANNS,即人工神经网络因其自身对非线性复杂关系的逼近和基于网络神经元的信息鲁棒性与容错性近年来被广泛应用在社会生产、生活的多个领域,特别是网络信息技术领域。为了进一步提高网络数据资源的利用效率,通过对ANNS的服务语义和匹配算法进行描述,进而对ANNS的空间信息在服务智能集成算法中的应用展开了深入研究。 展开更多
关键词 anns 空间信息 服务智能集成算法 前/后序服务
下载PDF
Predicting pollutant removal in constructed wetlands using artificial neural networks(ANNs)
3
作者 Christopher Kiiza Shun-qi Pan +1 位作者 Bettina Bockelmann-Evans Akintunde Babatunde 《Water Science and Engineering》 EI CAS CSCD 2020年第1期14-23,共10页
Growth in urban population,urbanisation,and economic development has increased the demand for water,especially in water-scarce regions.Therefore,sustainable approaches to water management are needed to cope with the e... Growth in urban population,urbanisation,and economic development has increased the demand for water,especially in water-scarce regions.Therefore,sustainable approaches to water management are needed to cope with the effects of the urbanisation on the water environment.This study aimed to design novel configurations of tidal-flow vertical subsurface flow constructed wetlands(VFCWs)for treating urban stormwater.A series of laboratory experiments were conducted with semi-synthetic influent stormwater to examine the effects of the design and operation variables on the performance of the VFCWs and to identify optimal design and operational strategies,as well as maintenance requirements.The results show that the VFCWs can significantly reduce pollutants in urban stormwater,and that pollutant removal was related to specific VFCW designs.Models based on the artificial neural network(ANN)method were built using inputs derived from data exploratory techniques,such as analysis of variance(ANOVA)and principal component analysis(PCA).It was found that PCA reduced the dimensionality of input variables obtained from different experimental design conditions.The results show a satisfactory generalisation for predicting nitrogen and phosphorus removal with fewer variable inputs,indicating that monitoring costs and time can be reduced. 展开更多
关键词 CONSTRUCTED WETLANDS Urban STORMWATER POLLUTANT removal Artificial neural networks(anns) Principal component analysis(PCA)
下载PDF
Hydrodynamic Performance Prediction of Stepped Planing Craft Using CFD and ANNs 被引量:5
4
作者 Hamid Kazemi M.Mehdi Doustdar +2 位作者 Amin Najafi Hashem Nowruzi M.Javad Ameri 《Journal of Marine Science and Application》 CSCD 2021年第1期67-84,共18页
In the present paper,the hydrodynamic performance of stepped planing craft is investigated by computational fluid dynamics(CFD)analysis.For this purpose,the hydrodynamic resistances of without step,one-step,and two-st... In the present paper,the hydrodynamic performance of stepped planing craft is investigated by computational fluid dynamics(CFD)analysis.For this purpose,the hydrodynamic resistances of without step,one-step,and two-step hulls of Cougar planing craft are evaluated under different distances of the second step and LCG from aft,weight loadings,and Froude numbers(Fr).Our CFD results are appropriately validated against our conducted experimental test in National Iranians Marine Laboratory(NIMALA),Tehran,Iran.Then,the hydrodynamic resistance of intended planing crafts under various geometrical and physical conditions is predicted using artificial neural networks(ANNs).CFD analysis shows two different trends in the growth rate of resistance to weight ratio.So that,using steps for planing craft increases the resistance to weight ratio at lower Fr and decreases it at higher Fr.Additionally,by the increase of the distance between two steps,the resistance to weight ratio is decreased and the porpoising phenomenon is delayed.Furthermore,we obtained the maximum mean square error of ANNs output in the prediction of resistance to weight ratio equal to 0.0027.Finally,the predictive equation is suggested for the resistance to weight ratio of stepped planing craft according to weights and bias of designed ANNs. 展开更多
关键词 Stepped planing craft Hydrodynamic performance Artificial neural network(ANN) Computational fluid dynamics(CFD) RESISTANCE
下载PDF
Agent Modeling of User Preferences Based on Fuzzy Classified ANNs in Automated Negotiation
5
作者 顾铁军 汤兵勇 +1 位作者 马溪骏 李毅 《Journal of Donghua University(English Edition)》 EI CAS 2011年第1期45-48,共4页
In agent-based automated negotiation research area,a key problem is how to make software agent more adaptable to represent user preferences or suggestions,so that agent can take further proposals that reflect user req... In agent-based automated negotiation research area,a key problem is how to make software agent more adaptable to represent user preferences or suggestions,so that agent can take further proposals that reflect user requirements to implement ecommerce activities like automated transactions.The difficulty lies in the uncertainty of user preferences that include uncertain description and contents,non-linear and dynamic variability.In this paper,fuzzy language was used to describe the uncertainty and combine with multiple classified artificial neural networks(ANNs) for self-adaptive learning of user preferences.The refinement learning results of various negotiation contracts' satisfaction degrees in the extent of fuzzy classification can be achieved.Compared to unclassified computation,the experimental results illustrate that the learning ability and effectiveness of agents have been improved. 展开更多
关键词 AGENT automated negotiation user modeling artificial neural network(ANN) fuzzy classification
下载PDF
Application of ANNs Model with the SDSM for the Hydrological Trend Prediction in the Sub-catchment of Kurau River, Malaysia
6
作者 Zulkamain Hassan Sobri Harun Marlinda Abdul Malek 《Journal of Environmental Science and Engineering(B)》 2012年第5期577-585,共9页
The paper describes the application of SDSM (statistical downscaling model) and ANNs (artificial neural networks) models for prediction of the hydrological trend due to the climate-change. The SDSM has been calibr... The paper describes the application of SDSM (statistical downscaling model) and ANNs (artificial neural networks) models for prediction of the hydrological trend due to the climate-change. The SDSM has been calibrated and generated for the possible future scenarios of meteorological variables, which are temperature and rainfall by using GCMs (global climate models). The GCM used is SRES A2. The downscaled meteorological variables corresponding to SDSM were then used as input to the ANNs model calibrated with observed station data to simulate the corresponding future streamflow changes in the sub-catchment of Kurau River. This study has discovered the hydrological trend over the catchment. The projected monthly streamflow has shown a decreasing trend due to the increase in the, mean of temperature for overall months, except the month of August and November. 展开更多
关键词 SDSM ANN rainfall-streamflow climate change downscaling.
下载PDF
基于ANN和XGB算法的锈蚀钢筋混凝土高温粘结强度预测方法
7
作者 刘廷滨 黄滔 +3 位作者 欧嘉祥 李云霞 艾岩 任正熹 《工程力学》 EI CSCD 北大核心 2024年第S01期300-309,共10页
为准确评估锈蚀钢筋混凝土(CRC)结构在突发火灾下的结构承载力,锈蚀钢筋混凝土高温粘结强度的统一预测方法研究亟待开展。然而,粘结退化机理复杂,粘结因素众多,实验方法不能考虑所有粘结因素的相关复杂关系的影响。在现有大量试验数据... 为准确评估锈蚀钢筋混凝土(CRC)结构在突发火灾下的结构承载力,锈蚀钢筋混凝土高温粘结强度的统一预测方法研究亟待开展。然而,粘结退化机理复杂,粘结因素众多,实验方法不能考虑所有粘结因素的相关复杂关系的影响。在现有大量试验数据的基础上,采用机器学习方法可以有效地通过数据建立输入和输出特征之间的回归关系。该文利用ANN和XGB两种机器学习算法建立了一个统一的锈蚀钢筋混凝土高温粘结强度预测模型。基于612组高温锈蚀钢筋混凝土的试验研究数据,进行模型训练和测试。结果表明:ML模型的预测结果与实验结果十分吻合。此外,针对机器学习算法本身存在的黑盒子问题,使用SHAP方法来解决锈蚀钢筋混凝土高温粘结强度预测过程中的模型可解释性问题。同时,还将ML模型的计算结果与三种理论计算公式的结果进行了比较,结果表明:ML模型具有明显的优势。新构建的混合机器学习模型很有可能成为准确评估CRC结构经受高温后的损伤程度问题的新选择。 展开更多
关键词 人工神经网络(ANN) 极端梯度提升树(XGB) 锈蚀钢筋混凝土 高温粘结强度 SHAP方法
下载PDF
基于ANN的RECFST短柱轴压承载力预测
8
作者 杜运兴 刁俊杰 《沈阳建筑大学学报(自然科学版)》 CAS 北大核心 2024年第3期414-422,共9页
目的针对相关设计规范和文献在计算圆端形截面钢管混凝土短柱轴压承载力上的局限性,开发高精高效的轴压承载力预测模型。方法首先,基于国内外已有的RECFST短柱轴压试验研究结果建立有限元模型,并通过验证;其次,基于Python脚本批量生成... 目的针对相关设计规范和文献在计算圆端形截面钢管混凝土短柱轴压承载力上的局限性,开发高精高效的轴压承载力预测模型。方法首先,基于国内外已有的RECFST短柱轴压试验研究结果建立有限元模型,并通过验证;其次,基于Python脚本批量生成有限元模型,建立涵盖广泛输入参数的数据集;然后,利用数据集开发高精度的ANN模型并与相关规范和文献结果进行比较;最后,基于ANN模型开发GUI图形用户界面工具。结果ANN模型预测值与试验结果之比的平均值N ANN/N u=0.98,模型预测误差远低于相关规范和文献公式预测误差;ANN模型的均方误差K MSE=7.3734×10-7,总数据样本回归值R=0.99963,表明了ANN模型的有效性以及预测结果的精确性。结论ANN模型可以准确预测RECFST短柱的轴压承载力,基于模型开发的GUI工具简便实用。 展开更多
关键词 ANN RECFST短柱 轴压承载力 图形用户界面工具
下载PDF
A Novel Approach to Energy Optimization:Efficient Path Selection in Wireless Sensor Networks with Hybrid ANN
9
作者 Muhammad Salman Qamar Ihsan ulHaq +3 位作者 Amil Daraz Atif MAlamri Salman A.AlQahtani Muhammad Fahad Munir 《Computers, Materials & Continua》 SCIE EI 2024年第5期2945-2970,共26页
In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing protocols.InWSNs,the limited energy resources of Senso... In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing protocols.InWSNs,the limited energy resources of Sensor Nodes(SNs)are a big challenge for ensuring their efficient and reliable operation.WSN data gathering involves the utilization of a mobile sink(MS)to mitigate the energy consumption problem through periodic network traversal.The mobile sink(MS)strategy minimizes energy consumption and latency by visiting the fewest nodes or predetermined locations called rendezvous points(RPs)instead of all cluster heads(CHs).CHs subsequently transmit packets to neighboring RPs.The unique determination of this study is the shortest path to reach RPs.As the mobile sink(MS)concept has emerged as a promising solution to the energy consumption problem in WSNs,caused by multi-hop data collection with static sinks.In this study,we proposed two novel hybrid algorithms,namely“ Reduced k-means based on Artificial Neural Network”(RkM-ANN)and“Delay Bound Reduced kmeans with ANN”(DBRkM-ANN)for designing a fast,efficient,and most proficient MS path depending upon rendezvous points(RPs).The first algorithm optimizes the MS’s latency,while the second considers the designing of delay-bound paths,also defined as the number of paths with delay over bound for the MS.Both methods use a weight function and k-means clustering to choose RPs in a way that maximizes efficiency and guarantees network-wide coverage.In addition,a method of using MS scheduling for efficient data collection is provided.Extensive simulations and comparisons to several existing algorithms have shown the effectiveness of the suggested methodologies over a wide range of performance indicators. 展开更多
关键词 Wireless Sensor Networks(WSNs) mobile sink(MS) rendezvous point(RP) machine learning Artificial Neural Networks(anns)
下载PDF
Simultaneous Identification of Thermophysical Properties of Semitransparent Media Using a Hybrid Model Based on Artificial Neural Network and Evolutionary Algorithm
10
作者 LIU Yang HU Shaochuang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期458-475,共18页
A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv... A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors. 展开更多
关键词 semitransparent medium coupled conduction-radiation heat transfer thermophysical properties simultaneous identification multilayer artificial neural networks(anns) evolutionary algorithm hybrid identification model
下载PDF
基于SEM与ANN混合方法的社交问答平台用户转移行为
11
作者 周涛 宓秦泽 《信息与管理研究》 2024年第1期30-42,共13页
社交问答平台得到了用户的广泛使用,但由于各平台的功能类似,用户转移起来较为容易,这将导致用户流失。基于PPM模型,研究社交问答平台用户转移行为。采集447份有效数据,采用SEM(结构方程模型)与ANN(人工神经网络)混合方法进行分析。结... 社交问答平台得到了用户的广泛使用,但由于各平台的功能类似,用户转移起来较为容易,这将导致用户流失。基于PPM模型,研究社交问答平台用户转移行为。采集447份有效数据,采用SEM(结构方程模型)与ANN(人工神经网络)混合方法进行分析。结果发现:推力因素(不满意度、厌倦性)和拉力因素(内容质量、用户体验)正向影响用户的转移意向,锚定因素(转移成本)负向影响转移意向,且负向调节推力因素和拉力因素的作用。ANN结果显示:不满意度是影响转移意向的最重要因素。因此,社交问答平台需要提高内容质量,改善用户体验,降低用户的不满意度和厌倦性,从而防止用户的转移行为,实现用户保持。 展开更多
关键词 社交问答平台 转移行为 SEM ANN
下载PDF
基于人工神经网络智能算法的9310钢本构模型优化 被引量:1
12
作者 施文鹏 孙岑花 +2 位作者 李佳俊 王宇航 董显娟 《精密成形工程》 北大核心 2024年第3期171-180,共10页
目的研究9310钢在变形温度为800~1200℃、应变速率为0.01~50s-1和高度压下量为70%条件下的热变形行为,建立预测效果相对较好的9310钢本构模型。方法使用Gleeble-3800热模拟机对9310钢进行等温恒应变速率热压缩实验,基于热压缩实验数据,... 目的研究9310钢在变形温度为800~1200℃、应变速率为0.01~50s-1和高度压下量为70%条件下的热变形行为,建立预测效果相对较好的9310钢本构模型。方法使用Gleeble-3800热模拟机对9310钢进行等温恒应变速率热压缩实验,基于热压缩实验数据,分析了应变速率对9310钢流动软化效应的影响,建立了考虑应变补偿的Arrhenius本构模型与支持向量回归(SVR)本构模型,并进行了模型精度分析,之后引入人工神经网络(ANN)智能算法优化了Arrhenius本构模型。结果与变形温度相比,应变速率对9310钢流动软化效应的影响更为显著。相较于支持向量回归(SVR)本构模型,考虑应变补偿的Arrhenius本构模型精度更高,其相关系数R为0.9934,平均相对误差(AARE)和均方误差(MSE)分别为0.0556和89.362,它在预测高应变速率(1、10、50 s-1)流动应力时出现了较大偏差,经ANN智能算法优化后,相关系数R提高至0.9991,AARE和MSE分别降至0.0199和9.998,且绝对误差在±10MPa以内的预测流动应力占比为98.34%。结论在低应变速率(0.01 s-1)下软化效应更强,在高应变速率(10 s-1)下再结晶程度较低,软化效应较弱。ANN智能算法优化后的Arrhenius本构模型具有较高的精度,能较准确地预测9310钢的流动行为。 展开更多
关键词 9310钢 本构模型 Arrhenius型本构模型 人工神经网络(ANN) 智能算法优化
下载PDF
ANN模型与分段线性插值及回归模型的比较及应用
13
作者 赵伟 毛继新 +1 位作者 关见朝 吴兴华 《泥沙研究》 CAS CSCD 北大核心 2024年第4期74-80,共7页
对ANN模型、分段线性插值模型和非线性回归模型从原理上进行了比较,ANN模型易于构建各影响因素与因变量间复杂关系,非线性回归模型和分段线性插值模型可以将自变量与因变量间的关系通过表达式直观表达。以荆江三口分流量与枝城流量的关... 对ANN模型、分段线性插值模型和非线性回归模型从原理上进行了比较,ANN模型易于构建各影响因素与因变量间复杂关系,非线性回归模型和分段线性插值模型可以将自变量与因变量间的关系通过表达式直观表达。以荆江三口分流量与枝城流量的关系为应用算例,采用相关系数、纳什效率系数、均方根误差和平均绝对误差等4个评价指标对3个模型的拟合精度和误差大小进行了比较。结果表明:3个模型均可应用于模拟枝城流量与荆江三口分流量的关系,但3个模型的计算值与实际值间的误差大小存在差异,从4个评价指标综合来看,ANN模型计算值与实测值的误差最小,分段线性插值模型次之,回归模型计算精度相对较低。 展开更多
关键词 ANN模型 非线性回归模型 分段线性插值模型 荆江河段 三口分流
下载PDF
人工智能助力Fenton法降解间甲酚废水的过程优化研究
14
作者 张婧 张橙 +4 位作者 卫皇瞾 靳海波 何广湘 刘一楠 马磊 《现代化工》 CAS CSCD 北大核心 2024年第7期103-108,共6页
采用Fenton氧化法进行人工智能芬顿氧化处理间甲酚废水实验,考察了Fe^(2+)质量浓度、H2O2体积分数、初始pH、反应时间和间甲酚初始质量分数对降解间甲酚反应的影响,利用响应面法(RSM)和人工神经网络(ANN)分别确定降解间甲酚的最佳方案,... 采用Fenton氧化法进行人工智能芬顿氧化处理间甲酚废水实验,考察了Fe^(2+)质量浓度、H2O2体积分数、初始pH、反应时间和间甲酚初始质量分数对降解间甲酚反应的影响,利用响应面法(RSM)和人工神经网络(ANN)分别确定降解间甲酚的最佳方案,同时对TOC去除率的关系进行拟合优化对比。结果表明,利用ANN模型并采用枚举法获取的最佳优化条件:Fe^(2+)质量浓度为0.66 g/L、H_(2)O_(2)体积分数为6.00 mL/L、初始pH为3、反应时间为23.37 min、间甲酚初始质量分数为50μg/g,此时,TOC去除率为48.14%,优于响应面法的32.16%。 展开更多
关键词 人工智能 人工神经网络(ANN) 芬顿 间甲酚 响应面
下载PDF
基于机器学习的超高性能混凝土成本优化
15
作者 周帅 贾跃 +6 位作者 李凯 李紫剑 巫晓雪 彭海游 张成明 韩凯航 王冲 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第7期1018-1023,共6页
近年来,超高性能混凝土(UHPC)凭借其优异的力学性能和耐久性能成为热点研究方向之一,但高昂的成本始终限制其在工程中的应用。提出了一种基于机器学习的超高性能混凝土配合比优化的方法,以降低UHPC的成本。为实现这一目标,首先通过人工... 近年来,超高性能混凝土(UHPC)凭借其优异的力学性能和耐久性能成为热点研究方向之一,但高昂的成本始终限制其在工程中的应用。提出了一种基于机器学习的超高性能混凝土配合比优化的方法,以降低UHPC的成本。为实现这一目标,首先通过人工神经网络(ANN)建立了UHPC 28 d抗压强度与扩展度的预测模型,再以其为约束条件,同时考虑UHPC组分含量约束、组分比例约束,通过遗传算法(GA)降低UHPC的成本。研究结果表明,ANN模型的预测结果与实验结果的误差在10%以内,具有良好的预测精度;遗传算法优化后的UHPC成本降低至838.8美元,低于文献中1000美元的成本。 展开更多
关键词 超高性能混凝土(UHPC) 机器学习 人工神经网络(ANN) 遗传算法 成本
下载PDF
远程LIBS结合GA-arPLS的爆炸物识别研究
16
作者 闫红宇 赵宇 +2 位作者 陈媛媛 刘昊 王志斌 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第11期3199-3205,共7页
为了保障公共安全和预防恐怖袭击事件的发生,提出基于遗传算法(GA)优化非对称重加权惩罚最小二乘(arPLS)的远程LIBS基线校正预处理方法,结合ANN分类模型实现6m距离下的四种爆炸物(TNT、RDX、HMX和CL-20)快速、准确识别。GA-arPLS算法基... 为了保障公共安全和预防恐怖袭击事件的发生,提出基于遗传算法(GA)优化非对称重加权惩罚最小二乘(arPLS)的远程LIBS基线校正预处理方法,结合ANN分类模型实现6m距离下的四种爆炸物(TNT、RDX、HMX和CL-20)快速、准确识别。GA-arPLS算法基于arPLS引入适应度函数评估拟合基线,寻找候选参数空间中的最优解来实现拟合LIBS基线。由于LIBS光谱信号通常包括连续辐射、原子与分子发射线等噪声信息,其覆盖了LIBS光谱较宽的光波段;直接通过LIBS光谱对相似元素的有机物定性分析时,难以捕捉相似爆炸物的特征光谱之间微小差异实现分类,故远距离环境下通过GA-arPLS预处理来提高特征谱线辨识能力很有必要,因此提升光谱分析的准确度很有必要。研究将GA-arPLS校正前后的LIBS数据集分别作为支持向量机(SVM)和最邻近分类(KNN)的输入,SVM的分类准确率提升了8.4%,而KNN分类模型的准确率提升8.7%。分类准确率表明,该GA-arPLS基线校正预处理方法可有效降低远程LIBS光谱的连续背景,而结合人工神经网络(ANN)构建的分类模型对相似爆炸物的识别准确率从89.2%提升至100%,分类识别效果达到最优。研究表明,该基线校正预处理方法不仅有效减小远距离LIBS的连续背景辐射和噪声干扰,而且提升了远程LIBS分类模型的鲁棒性和预测能力。研究成果有望提升远程LIBS在爆炸物检测方面的准确性和效率,以更好地应对潜在的爆炸物威胁。 展开更多
关键词 远程激光诱导击穿光谱 爆炸物识别 GA-arPLS预处理 人工神经网络(ANN) 基线校正
下载PDF
基于STM32的AI智能农业系统
17
作者 胡纯意 李建辉 +2 位作者 胡纯蓉 方定明 周锐深 《物联网技术》 2024年第7期111-114,117,共5页
本项目设计了以STM32F103ZET6单片机为控制核心的AI智能农业系统,系统具有多个采集数据的传感器,采集到的数据通过WiFi通信显示在云端上,可通过手机小程序查看植株的环境数据。当检测到的特定数据超过设定的阈值时或者根据摄像头处理识... 本项目设计了以STM32F103ZET6单片机为控制核心的AI智能农业系统,系统具有多个采集数据的传感器,采集到的数据通过WiFi通信显示在云端上,可通过手机小程序查看植株的环境数据。当检测到的特定数据超过设定的阈值时或者根据摄像头处理识别植株的生长状态时,单片机会主动开启调控。实验结果表明:该系统性能稳定,能够保证环境数据指标控制在作物生长适宜的范围内,使系统简单化。 展开更多
关键词 智能农业 物联网 ANN算法 AI OneNET ESP8266
下载PDF
ANFIS and ANNs model for prediction of moisture diffusivity and specific energy consumption potato,garlic and cantaloupe drying under convective hot air dryer 被引量:4
18
作者 Mohammad Kaveh Vali Rasooli Sharabiani +3 位作者 Reza Amiri Chayjan Ebrahim Taghinezhad Yousef Abbaspour-Gilandeh Iman Golpour 《Information Processing in Agriculture》 EI 2018年第3期372-387,共16页
The main purpose of this study was to develop and apply an adaptive neuro-fuzzy inference system(ANFIS)and Artificial Neural Networks(ANNs)model for predicting the drying characteristics of potato,garlic and cantaloup... The main purpose of this study was to develop and apply an adaptive neuro-fuzzy inference system(ANFIS)and Artificial Neural Networks(ANNs)model for predicting the drying characteristics of potato,garlic and cantaloupe at convective hot air dryer.Drying experiments were conducted at the air temperatures of 40,50,60 and 70C and the air speeds of 0.5,1 and l.5 m/s.Drying properties were including kinetic drying,effective moisture diffusivity(Deff)and specific energy consumption(SEC).The highest value of Deff obtained 9.76×10^-9,0.13×10^-9 and 9.97×10^-10 m^2/s for potato,garlic,and cantaloupe,respectively.The lowest value of SEC for potato,garlic,and cantaloupe were calculated 1.94105,4.52105 and 2.12105 kJ/kg,respectively.Results revealed that the ANFIS model had the high ability to predict the Deff(R^2=0.9900),SEC(R^2=0.9917),moisture ratio(R^2=0.9974)and drying rate(R^2=0.9901)during drying.So ANFIS method had the high ability to evaluate all output as compared to ANNs method. 展开更多
关键词 Convective hot air drying Drying kinetics Effective moisture diffusivity ANFIS anns
原文传递
基于GA改进ANN算法的车载网控系统故障诊断
19
作者 杨慧荣 《山西电子技术》 2024年第1期16-18,共3页
车载网控系统是保证运行安全的一类重要控制设备,也是确保系统稳定运行的核心部件。为了提高车载网控系统故障诊断效率,通过遗传算法(GA)具有的全局寻优功能来实现对神经网络初始阈值与权值的优化,把寻优结果代到神经网络内完成训练过程... 车载网控系统是保证运行安全的一类重要控制设备,也是确保系统稳定运行的核心部件。为了提高车载网控系统故障诊断效率,通过遗传算法(GA)具有的全局寻优功能来实现对神经网络初始阈值与权值的优化,把寻优结果代到神经网络内完成训练过程;使ANN泛化方法具有的映射性能获得充分利用可以防止产生局部极小值情况,获得更高的分类精度;利用实例分析方式测试车载故障诊断过程的有效性。研究结果表明:采用GA改进ANN算法可以有效优化平均误差及数据正确率,有效降低迭代次数,表明可以通过GA改进ANN方法来提升神经网络运算性能。经过遗传算法优化处理的ANN在训练过程中可以获得比初始ANN更快时收敛速率。 展开更多
关键词 车载网控系统 故障诊断 遗传算法 ANN 有效性 分类精度
下载PDF
Assessing foundation behaviour under complex loading near tunnels
20
作者 Piyush KUMAR Vinay Bhushan CHAUHAN Aayush KUMAR 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3503-3520,共18页
The stability of strip footings subjected to eccentrically inclined loads is critical for reliable foundation design.This study investigates the effect of a circular unlined tunnel in a rock mass on the ultimate beari... The stability of strip footings subjected to eccentrically inclined loads is critical for reliable foundation design.This study investigates the effect of a circular unlined tunnel in a rock mass on the ultimate bearing capacity(UBC)of a foundation with width B under inclined and eccentric loads.Adaptive finite element limit analysis was employed to evaluate the reduction in UBC of the footing resting above a tunnel.The examined critical parameters include normalized load eccentricity(e/B),load inclination(β),and horizontal and vertical distances of the tunnel from the foundation(P/B and Q/B,respectively),along with rock mass properties.The results reveal that for e/B≥0.25 and β≤60°,the reduction coefficient,R_(c)≥0.90,suggesting that the presence of a tunnel has a minimal impact on the load-bearing capacity of the footing,with failure primarily governed by load eccentricity and inclination.Additionally,potential failure mechanisms are explored,showing that at lower e/B,higher β,and lower Q/B,the tunnel significantly affects footing's failure envelope.Conversely,at higher e/B and lower β,failure is due to rotational effects of footing,regardless of the tunnel's position.To predict the Rc more accurately,due to the time-consuming nature of direct calculations,both MLR and ANN models were developed.The MLR model provided a baseline for comparison,while the ANN model,with a coefficient of determination(R2)of 0.98,demonstrated superior accuracy compared to the R2=0.96 of MLR.Using both approaches ensured robust and efficient predictions of Rc.Since Rc does not directly provide the reduced UBC of footing due to presence of tunnel,the study introduced bearing capacity factor(Nc)to enable direct calculation of the reduced UBC of footing.These findings offer theoretical guidelines for preliminary design and provide practitioners with an effective tool for evaluating UBC reduction in complex loading scenarios involving tunnels. 展开更多
关键词 Unlined tunnel Shallow foundation FELA Rock Mass ANN MLR
下载PDF
上一页 1 2 70 下一页 到第
使用帮助 返回顶部