大型室内活动中获取的室内人员轨迹数据具有时空复杂性高、高维且不规则等特点,给可视分析带来了一定挑战。针对该问题,面向室内人员的时空模式、人群移动模式、异常行为模式等设计了一种基于兴趣区(AOI,area of interest)划分的室内轨...大型室内活动中获取的室内人员轨迹数据具有时空复杂性高、高维且不规则等特点,给可视分析带来了一定挑战。针对该问题,面向室内人员的时空模式、人群移动模式、异常行为模式等设计了一种基于兴趣区(AOI,area of interest)划分的室内轨迹可视分析方法 ,用户可自定义兴趣区并以此为单位进行室内轨迹分析,从而确定其时空模式、移动模式或异常行为。最后,使用China Vis2019挑战赛的数据验证了所提方法的有效性,达到了通过探索式分析室内人员轨迹获取有价值信息的目的。展开更多
文摘大型室内活动中获取的室内人员轨迹数据具有时空复杂性高、高维且不规则等特点,给可视分析带来了一定挑战。针对该问题,面向室内人员的时空模式、人群移动模式、异常行为模式等设计了一种基于兴趣区(AOI,area of interest)划分的室内轨迹可视分析方法 ,用户可自定义兴趣区并以此为单位进行室内轨迹分析,从而确定其时空模式、移动模式或异常行为。最后,使用China Vis2019挑战赛的数据验证了所提方法的有效性,达到了通过探索式分析室内人员轨迹获取有价值信息的目的。