It is proved that, for the nondivergence elliptic equations Σi,jn=1aijuxixj=f, if f belongs to the generalized Morrey spaces Lp, (w), then uxixj ∈ Lp, (w), where u is the W2,p-solution of the equations. In order to ...It is proved that, for the nondivergence elliptic equations Σi,jn=1aijuxixj=f, if f belongs to the generalized Morrey spaces Lp, (w), then uxixj ∈ Lp, (w), where u is the W2,p-solution of the equations. In order to obtain this, the author first establish the weighted boundedness for the commutators of some singular integral operators on Lp, (w).展开更多
In this paper, the weighted boundedness of parametric Marcinkiewicz integral and its commutator with rough kernels are considered. In addition, the weak type norm inequalities for parametric Marcinkiewicz integral and...In this paper, the weighted boundedness of parametric Marcinkiewicz integral and its commutator with rough kernels are considered. In addition, the weak type norm inequalities for parametric Marcinkiewicz integral and its commutator with different weight functions and Dini kernel are also discussed.展开更多
In this paper, we shall deal with the boundedness of the Littlewood-Paley operators with rough kernel. We prove the boundedness of the Lusin-area integral μΩs and Littlewood-Paley functions μΩ and μλ^* on the w...In this paper, we shall deal with the boundedness of the Littlewood-Paley operators with rough kernel. We prove the boundedness of the Lusin-area integral μΩs and Littlewood-Paley functions μΩ and μλ^* on the weighted amalgam spaces (Lω^q,L^p)^α(R^n)as 1〈q≤α〈p≤∞.展开更多
In this paper, we will obtain the weak type estimates of intrinsic square func- tions including the Lusin area integral, Littlewood-Paley g-function and g^-function on the weighted Morrey spaces L^1,k (w) for 0〈k〈...In this paper, we will obtain the weak type estimates of intrinsic square func- tions including the Lusin area integral, Littlewood-Paley g-function and g^-function on the weighted Morrey spaces L^1,k (w) for 0〈k〈 1 and w ∈ A1.展开更多
For 0 〈 α 〈 mn and nonnegative integers n ≥ 2, m≥ 1, the multilinear fractional integral is defined bywhere →y= (y1, Y2,…, ym) and 7 denotes the m-tuple (f1, f2,…, fm). In this note, the one- weighted and ...For 0 〈 α 〈 mn and nonnegative integers n ≥ 2, m≥ 1, the multilinear fractional integral is defined bywhere →y= (y1, Y2,…, ym) and 7 denotes the m-tuple (f1, f2,…, fm). In this note, the one- weighted and two-weighted boundedness on Lp (JRn) space for multilinear fractional integral operator I(am) and the fractional multi-sublinear maximal operator Mα(m) are established re- spectively. The authors also obtain two-weighted weak type estimate for the operator Mα(m).展开更多
In this note the authors give the weighted Lp-boundedness for a class of maximal singular integral operators with rough kernel. The result in this note is an improvement and extension of the result obtained by Chen a...In this note the authors give the weighted Lp-boundedness for a class of maximal singular integral operators with rough kernel. The result in this note is an improvement and extension of the result obtained by Chen and Lin in 1990.展开更多
Let L = -△+V be a Schrodinger operator acting on L^2(R^n), n ≥ 1, where V ≠ 0 is a nonnegative locally integrable function on R^n. In this article, we will introduce weighted Hardy spaces Hp (w) associated wit...Let L = -△+V be a Schrodinger operator acting on L^2(R^n), n ≥ 1, where V ≠ 0 is a nonnegative locally integrable function on R^n. In this article, we will introduce weighted Hardy spaces Hp (w) associated with L by means of the square function and then study their atomic decomposition theory. We will also show that the Riesz transform △↓L^-1/2 associated with L is bounded from our new space HP(w) to the classical weighted Hardy sp ace HP ( w ) when n / (n + 1 ) 〈 p 〈 1 and w ∈ A 1 ∩ R H( 2 / p )'.展开更多
The Fourier transform and the Littlewood-Paley theory are used to give the weighted boundedness of a strongly singular integral operator defined in this paper. The paper shows that the strongly singular integral opera...The Fourier transform and the Littlewood-Paley theory are used to give the weighted boundedness of a strongly singular integral operator defined in this paper. The paper shows that the strongly singular integral operator is bounded from the Sobolev space to the Lebesgue space.展开更多
Let w be a Muckenhoupt weight and Hwp (JRn) be the weighted Hardy space. In this paper, by using the atomic decomposition of Hwp(Rn), we will show that the Bochner-Riesz operators TRδ are bounded from Hwp(Rn) t...Let w be a Muckenhoupt weight and Hwp (JRn) be the weighted Hardy space. In this paper, by using the atomic decomposition of Hwp(Rn), we will show that the Bochner-Riesz operators TRδ are bounded from Hwp(Rn) to the weighted weak Hardy spaces WHwp (Rn) for 0 〈 p 〈 1 and δ = n/p- (n + 1)/2. This result is new even in the unweighted case.展开更多
Shi and Wao[6] studied the boundedness of multilinear fractional integrals introduced by Kenig and Stein[3] on product of weighted LP-spaces, and got some results. We give some remarks with respect to their results an...Shi and Wao[6] studied the boundedness of multilinear fractional integrals introduced by Kenig and Stein[3] on product of weighted LP-spaces, and got some results. We give some remarks with respect to their results and correct some mistakes. We also consider another multilinear fractional integral introduced by Grafakos[2].展开更多
In this paper, we introduce weighted vector-valued Morrey spaces and obtain some estimates for vector-valued commutators on these spaces. Applications to CalderSn-Zygmund singular integral operators, oscillatory singu...In this paper, we introduce weighted vector-valued Morrey spaces and obtain some estimates for vector-valued commutators on these spaces. Applications to CalderSn-Zygmund singular integral operators, oscillatory singular integral operators and parabolic difference equations are considered.展开更多
Let μ be the n-dimensional Marcinkiewicz integral and μb the multilinear commutator of μ. In this paper, the following weighted inequalities are proved for ω ∈ A∞ and 0 〈 p 〈 ∞,||μ(f)||LP(ω)≤C|Mf...Let μ be the n-dimensional Marcinkiewicz integral and μb the multilinear commutator of μ. In this paper, the following weighted inequalities are proved for ω ∈ A∞ and 0 〈 p 〈 ∞,||μ(f)||LP(ω)≤C|Mf|LP(ω) and ||μb(f)||LP(ω)≤C||ML(log L)^1/r f||LP(ω).The weighted weak L(log L)^1/r -type estimate is also established when p=1 and ω∈A1.展开更多
Let μΩ^mb be the commutator generalized by μΩ, the n-dimensional Marcinkiewicz integral, and b ∈ BMO(R^n). The author establishes the weighted weak LlogL-type estimates for μΩ^mb when Ω satisfies a kind of D...Let μΩ^mb be the commutator generalized by μΩ, the n-dimensional Marcinkiewicz integral, and b ∈ BMO(R^n). The author establishes the weighted weak LlogL-type estimates for μΩ^mb when Ω satisfies a kind of Dini conditions, which improves the known result essentially.展开更多
Assuming that the operators L1,L2 are self-adjoint and e-tLi(i=1,2)satisfy the generalized Davies-Gaffney estimates,we shall prove that the weighted Hardy space H1L1,L2,w(Rn1×Rn2)associated to operatorsL1,L2 on p...Assuming that the operators L1,L2 are self-adjoint and e-tLi(i=1,2)satisfy the generalized Davies-Gaffney estimates,we shall prove that the weighted Hardy space H1L1,L2,w(Rn1×Rn2)associated to operatorsL1,L2 on product domain,which is defined in terms of area function,has an atomic decomposition for some weight w.展开更多
In this article, we apply the molecular characterization of the weighted Hardy space developed by the first two authors to show the boundedness of Hormander multiplier on the weighted Herz-type Hardy spaces HK^α,p 2...In this article, we apply the molecular characterization of the weighted Hardy space developed by the first two authors to show the boundedness of Hormander multiplier on the weighted Herz-type Hardy spaces HK^α,p 2(|x|^t; |x|^t) and HK^α,P 2(|x|^t; |x|^t).展开更多
文摘It is proved that, for the nondivergence elliptic equations Σi,jn=1aijuxixj=f, if f belongs to the generalized Morrey spaces Lp, (w), then uxixj ∈ Lp, (w), where u is the W2,p-solution of the equations. In order to obtain this, the author first establish the weighted boundedness for the commutators of some singular integral operators on Lp, (w).
文摘In this paper, the weighted boundedness of parametric Marcinkiewicz integral and its commutator with rough kernels are considered. In addition, the weak type norm inequalities for parametric Marcinkiewicz integral and its commutator with different weight functions and Dini kernel are also discussed.
基金supported in part by National Natural Foundation of China (Grant No. 11161042 and No. 11071250)
文摘In this paper, we shall deal with the boundedness of the Littlewood-Paley operators with rough kernel. We prove the boundedness of the Lusin-area integral μΩs and Littlewood-Paley functions μΩ and μλ^* on the weighted amalgam spaces (Lω^q,L^p)^α(R^n)as 1〈q≤α〈p≤∞.
文摘In this paper, we will obtain the weak type estimates of intrinsic square func- tions including the Lusin area integral, Littlewood-Paley g-function and g^-function on the weighted Morrey spaces L^1,k (w) for 0〈k〈 1 and w ∈ A1.
基金the NNSF of China under Grant#10771110NSF of Ningbo City under Grant#2006A610090
文摘For 0 〈 α 〈 mn and nonnegative integers n ≥ 2, m≥ 1, the multilinear fractional integral is defined bywhere →y= (y1, Y2,…, ym) and 7 denotes the m-tuple (f1, f2,…, fm). In this note, the one- weighted and two-weighted boundedness on Lp (JRn) space for multilinear fractional integral operator I(am) and the fractional multi-sublinear maximal operator Mα(m) are established re- spectively. The authors also obtain two-weighted weak type estimate for the operator Mα(m).
文摘In this note the authors give the weighted Lp-boundedness for a class of maximal singular integral operators with rough kernel. The result in this note is an improvement and extension of the result obtained by Chen and Lin in 1990.
文摘Let L = -△+V be a Schrodinger operator acting on L^2(R^n), n ≥ 1, where V ≠ 0 is a nonnegative locally integrable function on R^n. In this article, we will introduce weighted Hardy spaces Hp (w) associated with L by means of the square function and then study their atomic decomposition theory. We will also show that the Riesz transform △↓L^-1/2 associated with L is bounded from our new space HP(w) to the classical weighted Hardy sp ace HP ( w ) when n / (n + 1 ) 〈 p 〈 1 and w ∈ A 1 ∩ R H( 2 / p )'.
基金Project supported by the National Natural Science Foundation of China (No. 10771110)the Major Project of the Ministry of Education of China (No. 309018)
文摘The Fourier transform and the Littlewood-Paley theory are used to give the weighted boundedness of a strongly singular integral operator defined in this paper. The paper shows that the strongly singular integral operator is bounded from the Sobolev space to the Lebesgue space.
文摘Let w be a Muckenhoupt weight and Hwp (JRn) be the weighted Hardy space. In this paper, by using the atomic decomposition of Hwp(Rn), we will show that the Bochner-Riesz operators TRδ are bounded from Hwp(Rn) to the weighted weak Hardy spaces WHwp (Rn) for 0 〈 p 〈 1 and δ = n/p- (n + 1)/2. This result is new even in the unweighted case.
文摘Shi and Wao[6] studied the boundedness of multilinear fractional integrals introduced by Kenig and Stein[3] on product of weighted LP-spaces, and got some results. We give some remarks with respect to their results and correct some mistakes. We also consider another multilinear fractional integral introduced by Grafakos[2].
基金Supported by National Natural Science Foundation of China(Grant Nos.10901076and11271175)National Natural Science Foundation of Shandong Province(Grant No.ZR2012AQ026)the Key Laboratory of Mathematics and Complex System (Beijing Normal University),Ministry of Education,China
文摘In this paper, we introduce weighted vector-valued Morrey spaces and obtain some estimates for vector-valued commutators on these spaces. Applications to CalderSn-Zygmund singular integral operators, oscillatory singular integral operators and parabolic difference equations are considered.
基金Hei Long Jiang Postdoctoral Foundation (LBH-Q06002)
文摘Let μ be the n-dimensional Marcinkiewicz integral and μb the multilinear commutator of μ. In this paper, the following weighted inequalities are proved for ω ∈ A∞ and 0 〈 p 〈 ∞,||μ(f)||LP(ω)≤C|Mf|LP(ω) and ||μb(f)||LP(ω)≤C||ML(log L)^1/r f||LP(ω).The weighted weak L(log L)^1/r -type estimate is also established when p=1 and ω∈A1.
基金Supported by Postdoctoral Foundation of Hei Long Jiang Province (Grant No. LBH-Q06002)
文摘Let μΩ^mb be the commutator generalized by μΩ, the n-dimensional Marcinkiewicz integral, and b ∈ BMO(R^n). The author establishes the weighted weak LlogL-type estimates for μΩ^mb when Ω satisfies a kind of Dini conditions, which improves the known result essentially.
基金Qingquan Deng was supported by the National Natural Science Foundation of China(Grant No.11971191)the Fundamental Research Funds for the Central Universities(CCNU18QN030 and CCNU-18CXTD04)partially supported by the National Natural Science Foundation of China(Grant Nos.11661061,11671163).
文摘Assuming that the operators L1,L2 are self-adjoint and e-tLi(i=1,2)satisfy the generalized Davies-Gaffney estimates,we shall prove that the weighted Hardy space H1L1,L2,w(Rn1×Rn2)associated to operatorsL1,L2 on product domain,which is defined in terms of area function,has an atomic decomposition for some weight w.
基金Research is supported in part by National Science Council in Taipei
文摘In this article, we apply the molecular characterization of the weighted Hardy space developed by the first two authors to show the boundedness of Hormander multiplier on the weighted Herz-type Hardy spaces HK^α,p 2(|x|^t; |x|^t) and HK^α,P 2(|x|^t; |x|^t).