Ethylene response factors (ERFs) play important roles in response to plant biotic and abiotic stresses. In this study, a gene encoding a putative AP2/ERF domain-containing protein was isolated by screening a SSH cDN...Ethylene response factors (ERFs) play important roles in response to plant biotic and abiotic stresses. In this study, a gene encoding a putative AP2/ERF domain-containing protein was isolated by screening a SSH cDNA library from rice and designated as Oryza sativa AP2/ERF-like protein (OsAP2LP) gene. OsAP2LP is 1491 bp in length, interrupted by seven introns, and encodes a putative protein of 348 amino acids. Temporal and spatial expression analysis showed that the OsAP2LP gene was preferentially expressed in roots, panicles, mature embryos and seeds in rice. Real-time quantitative PCR analysis indicated that the expression levels of the OsAP2LP gene were increased under the treatments of drought and gibberellin but decreased under the treatments of low temperature, salt, abscisic acid (ABA) and zeatin. Taken together, these results suggest that OsAP2LP might be involved in stress responses, and probably plays roles as a transcription regulator when plants response to cold, salt and drought stresses through ABA and gibberellin pathways.展开更多
The Q/q gene, also known as WAP2, is an important gene for wheat domestication and is a member of the AP2 (APETALA2) class of transcription factors. In the present study, we first isolated the WRAP2 allele (where t...The Q/q gene, also known as WAP2, is an important gene for wheat domestication and is a member of the AP2 (APETALA2) class of transcription factors. In the present study, we first isolated the WRAP2 allele (where the superscript "t" refers to the speciese source, in this case "tauschii") on chromosome 5D from Aegilops tauschii Coss., the D-genome donor species of common wheat. We found that WRAP2 and the AP2 gene from Arabidopsis share a central core of the AP2 polypeptide, a highly basic 10-amino acid domain, and an AASSGF box, although there are many differences in the 37-amino acid serine-rich acidic domain and the remaining regions. In addition, WRAP2 was highly homologous to the homoeologous loci on 5A and 5B of wheat at both the nucleotide and amino acid level. However, there were some variations that are probably related to gene function. In the first AP2 domain, the amino acids VYL on the 5D and 5A loci were replaced with LLR on 5B. In the 37-amino acid serine-rich acidic domain, WRAP2 on 5D had an extra amino acid insertion. There was also a variation at the 329 amino acid position, which is thought to be related to the appearance of free-threshing wheat. At this position, the amino acid is isoleucine on 5A for the Q allele and valine for the q allele, whereas the amino acid is leucine on 5D and 5B. Furthermore, a Stowaway miniature terminal inverted repeat element (MITE) insertion was present in the ninth intron of WAP2 on 5B of all common wheats and partial tetraploid Triticum turgidum wheats. These results provide new clues for studies into the evolutionary biology of WAP2 and the origin of common wheat.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.30770132 and 30570103)
文摘Ethylene response factors (ERFs) play important roles in response to plant biotic and abiotic stresses. In this study, a gene encoding a putative AP2/ERF domain-containing protein was isolated by screening a SSH cDNA library from rice and designated as Oryza sativa AP2/ERF-like protein (OsAP2LP) gene. OsAP2LP is 1491 bp in length, interrupted by seven introns, and encodes a putative protein of 348 amino acids. Temporal and spatial expression analysis showed that the OsAP2LP gene was preferentially expressed in roots, panicles, mature embryos and seeds in rice. Real-time quantitative PCR analysis indicated that the expression levels of the OsAP2LP gene were increased under the treatments of drought and gibberellin but decreased under the treatments of low temperature, salt, abscisic acid (ABA) and zeatin. Taken together, these results suggest that OsAP2LP might be involved in stress responses, and probably plays roles as a transcription regulator when plants response to cold, salt and drought stresses through ABA and gibberellin pathways.
基金supported by the National BasicResearch Program(973 Program2009CB 118300),"100-Talent Program"of The Chinese Academy of Sciences,and by the Education Bureau and Science and Technology Bureau of Sichuan Province.
文摘The Q/q gene, also known as WAP2, is an important gene for wheat domestication and is a member of the AP2 (APETALA2) class of transcription factors. In the present study, we first isolated the WRAP2 allele (where the superscript "t" refers to the speciese source, in this case "tauschii") on chromosome 5D from Aegilops tauschii Coss., the D-genome donor species of common wheat. We found that WRAP2 and the AP2 gene from Arabidopsis share a central core of the AP2 polypeptide, a highly basic 10-amino acid domain, and an AASSGF box, although there are many differences in the 37-amino acid serine-rich acidic domain and the remaining regions. In addition, WRAP2 was highly homologous to the homoeologous loci on 5A and 5B of wheat at both the nucleotide and amino acid level. However, there were some variations that are probably related to gene function. In the first AP2 domain, the amino acids VYL on the 5D and 5A loci were replaced with LLR on 5B. In the 37-amino acid serine-rich acidic domain, WRAP2 on 5D had an extra amino acid insertion. There was also a variation at the 329 amino acid position, which is thought to be related to the appearance of free-threshing wheat. At this position, the amino acid is isoleucine on 5A for the Q allele and valine for the q allele, whereas the amino acid is leucine on 5D and 5B. Furthermore, a Stowaway miniature terminal inverted repeat element (MITE) insertion was present in the ninth intron of WAP2 on 5B of all common wheats and partial tetraploid Triticum turgidum wheats. These results provide new clues for studies into the evolutionary biology of WAP2 and the origin of common wheat.