A recently identified protein, FAN1 (FANCD2-associated nuclease 1, previously known as KIAA1018), is a novel nuclease associated with monoubiquitinated FANCD2 that is required for cellular resistance against DNA inter...A recently identified protein, FAN1 (FANCD2-associated nuclease 1, previously known as KIAA1018), is a novel nuclease associated with monoubiquitinated FANCD2 that is required for cellular resistance against DNA interstrand crosslinking (ICL) agents. The mechanisms of FAN1 regulation have not yet been explored. Here, we provide evidence that FAN1 is degraded during mitotic exit, suggesting that FAN1 may be a mitotic substrate of the anaphase-promoting cyclosome complex (APC/C). Indeed, Cdh1, but not Cdc20, was capable of regulating the protein level of FAN1 through the KEN box and the D-box. Moreover, the up-and down-regulation of FAN1 affected the progression to mitotic exit. Collectively, these data suggest that FAN1 may be a new mitotic substrate of APC/C Cdh1 that plays a key role during mitotic exit.展开更多
Fizzy-related protein homolog 1 (FZR1) mainly functions as a specific activator of the anaphase-promotingcomplex/cyclosome (APC/C) in the cell cycle and controls the G0 and G1 phases of the cell cycle. We highlightrec...Fizzy-related protein homolog 1 (FZR1) mainly functions as a specific activator of the anaphase-promotingcomplex/cyclosome (APC/C) in the cell cycle and controls the G0 and G1 phases of the cell cycle. We highlightrecent work that has studied the role of FZR1 in tumorigenesis, growth, differentiation, and genome stability throughcell-cycle control. We summarize the current state of knowledge regarding FZR1 structure, function, and the distinctways of APC/C dysregulation in solid tumors and hematologic malignancies. We also discuss novel approaches fortargeting the FZR1 as a cancer therapy and research area for future work.展开更多
Objective: To investigate the expressions of beta-catenin, protein APC (adenomatous polyposis coil protein), c-myc and cyclin D1 and their implication in ovarian epithelial tumor. Methods: Immunohistochemical stai...Objective: To investigate the expressions of beta-catenin, protein APC (adenomatous polyposis coil protein), c-myc and cyclin D1 and their implication in ovarian epithelial tumor. Methods: Immunohistochemical staining with SP method was conducted to identify the expressions of beta-catenin, APC protein, c-myc and cyclin D1 in ovarian epithelial tumor in 48 cases. Results: The abnormal expression rate of beta-catenin in malignant and borderline ovarian epithelial tumors was higher than that in benign epithelial tumors (P〈0.01). The expression rates of c-myc and cyclin-D1 in ovarian malignant and borderline epithelial tumors were higher than those in benign epithelial tumors too(P〈0.05). The prevalence of APC protein positive expression in benign epithelial tumors were significantly greater than that in malignant epithelial tumors (P〈0.05). A significant negative correlation was found between beta-catenin and APC protein in ovarian epithelial tumors; while a significant positive correlation was found between beta-catenin, c-myc and cyclin-D1 in ovarian epithelial tumor (P〈0.05). Conclusion: The abnormal expressions of Beta-catenin, APC protein, c-myc and cyclin-D1 might be used to indicate the malignance transform of ovarian epithelial tumors.展开更多
基金Fertilization-independent formation of embryo,endospermand pericarpfor apomictic hybrid ricesupported by Australian Centre for International Agricultural Research(CIM/2002/106)
基金supported by grants from Natural Science Foundation of Guangdong Province(No.10251008901000000 toT.K.)Ph.D.Program Foundation of Ministry of Education of China(No.20100171110079toT.K.)China Post doctoral Science Foundation(No.20110490966)
文摘A recently identified protein, FAN1 (FANCD2-associated nuclease 1, previously known as KIAA1018), is a novel nuclease associated with monoubiquitinated FANCD2 that is required for cellular resistance against DNA interstrand crosslinking (ICL) agents. The mechanisms of FAN1 regulation have not yet been explored. Here, we provide evidence that FAN1 is degraded during mitotic exit, suggesting that FAN1 may be a mitotic substrate of the anaphase-promoting cyclosome complex (APC/C). Indeed, Cdh1, but not Cdc20, was capable of regulating the protein level of FAN1 through the KEN box and the D-box. Moreover, the up-and down-regulation of FAN1 affected the progression to mitotic exit. Collectively, these data suggest that FAN1 may be a new mitotic substrate of APC/C Cdh1 that plays a key role during mitotic exit.
基金supported by the National Key Scientific Research Project(2017YFC1001903)Provincial and Ministerial Level Projects(cstc2016shmstzx10006)the Guizhou Provincial Science&Technology Program(QKHZC[2020]4Y154).
文摘Fizzy-related protein homolog 1 (FZR1) mainly functions as a specific activator of the anaphase-promotingcomplex/cyclosome (APC/C) in the cell cycle and controls the G0 and G1 phases of the cell cycle. We highlightrecent work that has studied the role of FZR1 in tumorigenesis, growth, differentiation, and genome stability throughcell-cycle control. We summarize the current state of knowledge regarding FZR1 structure, function, and the distinctways of APC/C dysregulation in solid tumors and hematologic malignancies. We also discuss novel approaches fortargeting the FZR1 as a cancer therapy and research area for future work.
基金the Scientific Research Start Found of Chongqing Medical University(QD 200201) project of Chongqing Science and Technology Committee (No. 040307)
文摘Objective: To investigate the expressions of beta-catenin, protein APC (adenomatous polyposis coil protein), c-myc and cyclin D1 and their implication in ovarian epithelial tumor. Methods: Immunohistochemical staining with SP method was conducted to identify the expressions of beta-catenin, APC protein, c-myc and cyclin D1 in ovarian epithelial tumor in 48 cases. Results: The abnormal expression rate of beta-catenin in malignant and borderline ovarian epithelial tumors was higher than that in benign epithelial tumors (P〈0.01). The expression rates of c-myc and cyclin-D1 in ovarian malignant and borderline epithelial tumors were higher than those in benign epithelial tumors too(P〈0.05). The prevalence of APC protein positive expression in benign epithelial tumors were significantly greater than that in malignant epithelial tumors (P〈0.05). A significant negative correlation was found between beta-catenin and APC protein in ovarian epithelial tumors; while a significant positive correlation was found between beta-catenin, c-myc and cyclin-D1 in ovarian epithelial tumor (P〈0.05). Conclusion: The abnormal expressions of Beta-catenin, APC protein, c-myc and cyclin-D1 might be used to indicate the malignance transform of ovarian epithelial tumors.