In this paper,the collective effects of combining heterogeneous Ag/TiO2 nanocomposite catalyst with the byproducts(primarily the irradiation and the O3 species) of an atmospheric pressure plasma jet(APPJ) system o...In this paper,the collective effects of combining heterogeneous Ag/TiO2 nanocomposite catalyst with the byproducts(primarily the irradiation and the O3 species) of an atmospheric pressure plasma jet(APPJ) system on the degradation of methyl orange(MO) were explored.The heterostructured Ag/TiO2 nanocomposite was achieved via decorating the Ag quantum dots(QDs) on the commercially available TiO_2catalyst(P25) through a hydrothermal method.The x-ray diffraction analysis of the nanocomposite catalyst showed the diffraction peaks at 44.3°,64.4°,and 77.5°,corresponding to the Ag planes of(200),(220) and(311),respectively.The high resolution transmission electron microscope characterization of the nanocomposite catalyst indicated that the Ag QDs with an average diameter of 5 nm were homogeneously distributed on the P25 surface.The experimental results on the MO photodegradation showed that the APPJ irradiation had a marginal effect on the cleavage of the MO molecules.When the Ag/TiO2 nanocomposite catalyst was used,the photodegradation rate of MO increased about 5 times.When both the APPJ byproducts and the Ag/TiO2 nanocomposite catalyst were used,however,over 90% of the MO in the tested solution was cleaved within 15 min,and the energy efficiency was about 0.6 g/k W h.Moreover,an optimal Ag dosage value was determined(6 wt%).The catalytic results indicated that combining the DBD plasma byproducts with heterogeneous nanocomposite catalysts may be an effect protocol for decreasing the application cost of the DBD system and mitigating the environment pollution by organic dyes in the textile industry.展开更多
Nowadays atmospheric pressure plasma jets (APPJs) are being widely applied to many fields and have received growing interests from cold plasma community. A helium APPJ with co-axial double ring electrode configurati...Nowadays atmospheric pressure plasma jets (APPJs) are being widely applied to many fields and have received growing interests from cold plasma community. A helium APPJ with co-axial double ring electrode configuration is driven by an AC high voltage power with an adjustable frequency of 1-60 kHz. Experiments are conducted for acquiring the electrical and optical properties of APPJ, including the discharge mode, current peak's phase and APPJ's length, etc. Moreover, the actions of Penning effect on APPJ are discussed by adding impurity nitrogen into highly pure helium. The results may contribute to further research and aPPlications of APPJs.展开更多
In this study,the effects of the fluid cooling and electric field line deformation were investigated in a dielectric barrier discharge(DBD)plasma source.The DBD plasma jet is improved by covering the ground electrode ...In this study,the effects of the fluid cooling and electric field line deformation were investigated in a dielectric barrier discharge(DBD)plasma source.The DBD plasma jet is improved by covering the ground electrode and a power electrode with insulating oil.We obtained positive results as insulating oil prevents arc formation,while it improved the supplied power and plasma jet length,and increased radical production.Radical production of this nonthermal plasma jet is studied with polyvinyl alcohol-potassium iodide liquid.展开更多
The sterilization of the simulated unearthed silk fabrics using an atmospheric pressure plasma jet(APPJ) system employing Ar/O2 or He/O2 plasma to inactivate the mycete attached on the silk fabrics is reported. The ...The sterilization of the simulated unearthed silk fabrics using an atmospheric pressure plasma jet(APPJ) system employing Ar/O2 or He/O2 plasma to inactivate the mycete attached on the silk fabrics is reported. The effects of the APPJ characteristics(particularly the gas type and discharge power) on the fabric strength, physical-chemical structures,and sterilizing efficiency were investigated. Experimental results showed that the Ar/O2 APPJ plasma can inactivate the mycete completely within 4.0 min under a discharge power of 50.0 W. Such an APPJ treatment had negligible impact on the mechanical strength of the fabric and the surface chemical characteristics. Moreover, the Ar ions, O and OH radicals were shown to play important roles on the sterilization of the mycete attached on the unearthed silk fabrics.展开更多
In the last two decades a growing interest has been shown in the investigation of atmospheric pressure plasma jets(APPJs)that operate in contact with liquid samples.In order to form a complete picture about such exper...In the last two decades a growing interest has been shown in the investigation of atmospheric pressure plasma jets(APPJs)that operate in contact with liquid samples.In order to form a complete picture about such experimental systems,it is necessary to perform detailed diagnostics of plasma jets,as one step that will enable the adjustment of system properties for applications in different areas.In this work,we conducted a detailed electrical characterisation of a plasma system configuration used for water treatment.A helium plasma jet,with a pin electrode powered by a continuous sine wave at a frequency of 330 k Hz,formed a streamer that was in contact with a distilled water sample.An electrical circuit allowed the monitoring of electrical signals supplied to the jet and also to the plasma itself.An electrical characterisation together with power consumption measurements was obtained by using two different methods.The first method was based on the direct measurements of voltage and current signals,while in the second method we used'Lissajous figures'.We compared these two methods when used for discharge power estimation and addressed their advantages and limitations.The results showed that both of these methods could be used to successfully determine power consumed by a discharge in contact with water,but only when taking into account power dissipation without plasma.展开更多
This study proposes polyvinyl alcohol–potassium iodide(PVA–KI)as a novel gel chemical probe.The probe uses the reactions among PVA,KI,water,borax,and oxidative species to visualize the distribution of reactive speci...This study proposes polyvinyl alcohol–potassium iodide(PVA–KI)as a novel gel chemical probe.The probe uses the reactions among PVA,KI,water,borax,and oxidative species to visualize the distribution of reactive species.This method provides information regarding the distribution of reactive species by coloration on the gel surface.The effects of the surrounding gas phase on the distribution and diffusion of the reactive species are also investigated using the PVA–KI gel probe.Further,the relationship between the irradiation distance and reactive species diffusion is determined on the surface of the PVA–KI probe with and without plastic shielding.Adjusting the irradiation distance appropriately leads to an increase in the modified area as detected by the PVA–KI gel probe analysis.The relative concentration distributions of the reactive species are also obtained from visualized color distributions measured using a colorimeter.Furthermore,reactive species generation by long-scale line plasma is confirmed by the color reaction on the PVA–KI gel surface,with a greater area being covered by an atmospheric-pressure pulsed microwave line plasma source.展开更多
基金the support from National Natural Science Foundation of China under Grant No.11175157the Zhejiang Natural Science Foundations of China under No.LY16A050002+1 种基金521 Talent Project of Zhejiang Sci-Tech Universitythe Young Researchers Foundations of Zhejiang Provincial Top Key Academic Discipline of Chemical Engineering and Technology
文摘In this paper,the collective effects of combining heterogeneous Ag/TiO2 nanocomposite catalyst with the byproducts(primarily the irradiation and the O3 species) of an atmospheric pressure plasma jet(APPJ) system on the degradation of methyl orange(MO) were explored.The heterostructured Ag/TiO2 nanocomposite was achieved via decorating the Ag quantum dots(QDs) on the commercially available TiO_2catalyst(P25) through a hydrothermal method.The x-ray diffraction analysis of the nanocomposite catalyst showed the diffraction peaks at 44.3°,64.4°,and 77.5°,corresponding to the Ag planes of(200),(220) and(311),respectively.The high resolution transmission electron microscope characterization of the nanocomposite catalyst indicated that the Ag QDs with an average diameter of 5 nm were homogeneously distributed on the P25 surface.The experimental results on the MO photodegradation showed that the APPJ irradiation had a marginal effect on the cleavage of the MO molecules.When the Ag/TiO2 nanocomposite catalyst was used,the photodegradation rate of MO increased about 5 times.When both the APPJ byproducts and the Ag/TiO2 nanocomposite catalyst were used,however,over 90% of the MO in the tested solution was cleaved within 15 min,and the energy efficiency was about 0.6 g/k W h.Moreover,an optimal Ag dosage value was determined(6 wt%).The catalytic results indicated that combining the DBD plasma byproducts with heterogeneous nanocomposite catalysts may be an effect protocol for decreasing the application cost of the DBD system and mitigating the environment pollution by organic dyes in the textile industry.
基金supported partly from China National Funds for Distinguished Young Scientists(No.51125029)National Natural Science Foundation of China(Nos.51307133+2 种基金81372076 and 51221005)the Fundamental Research Funds for the Central Universities of China(Nos.xjj2012132xkjc2013004 and xjj2013086)
文摘Nowadays atmospheric pressure plasma jets (APPJs) are being widely applied to many fields and have received growing interests from cold plasma community. A helium APPJ with co-axial double ring electrode configuration is driven by an AC high voltage power with an adjustable frequency of 1-60 kHz. Experiments are conducted for acquiring the electrical and optical properties of APPJ, including the discharge mode, current peak's phase and APPJ's length, etc. Moreover, the actions of Penning effect on APPJ are discussed by adding impurity nitrogen into highly pure helium. The results may contribute to further research and aPPlications of APPJs.
基金partially supported by the ZE Research Program,IAE(ZE31B-23)the joint usage/research program,c LPS(19022)。
文摘In this study,the effects of the fluid cooling and electric field line deformation were investigated in a dielectric barrier discharge(DBD)plasma source.The DBD plasma jet is improved by covering the ground electrode and a power electrode with insulating oil.We obtained positive results as insulating oil prevents arc formation,while it improved the supplied power and plasma jet length,and increased radical production.Radical production of this nonthermal plasma jet is studied with polyvinyl alcohol-potassium iodide liquid.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11665005,11505032,11547139,51672249,and 11565003)the Zhejiang Natural Science Foundation of China(Grant No.LY16A050002)+3 种基金the Natural Science Foundation of Jiangxi Province,China(Grant Nos.20161BAB211026,20171ACB21049,and 20171BAB211012)the Science and Technology Project of Jiangxi Provincial Department of Education,China(Grant No.GJJ150981)the Program for Innovative Research Team of Zhejiang Sci-Tech University,Chinathe Opening Foundation of Insititue of Textile Technology,Wuhan Texitle Universitiy,China(Grant No.GCZX201702)
文摘The sterilization of the simulated unearthed silk fabrics using an atmospheric pressure plasma jet(APPJ) system employing Ar/O2 or He/O2 plasma to inactivate the mycete attached on the silk fabrics is reported. The effects of the APPJ characteristics(particularly the gas type and discharge power) on the fabric strength, physical-chemical structures,and sterilizing efficiency were investigated. Experimental results showed that the Ar/O2 APPJ plasma can inactivate the mycete completely within 4.0 min under a discharge power of 50.0 W. Such an APPJ treatment had negligible impact on the mechanical strength of the fabric and the surface chemical characteristics. Moreover, the Ar ions, O and OH radicals were shown to play important roles on the sterilization of the mycete attached on the unearthed silk fabrics.
基金supported by MESTD Republic of Serbia (No. 451-03-68/2020-14/200024)
文摘In the last two decades a growing interest has been shown in the investigation of atmospheric pressure plasma jets(APPJs)that operate in contact with liquid samples.In order to form a complete picture about such experimental systems,it is necessary to perform detailed diagnostics of plasma jets,as one step that will enable the adjustment of system properties for applications in different areas.In this work,we conducted a detailed electrical characterisation of a plasma system configuration used for water treatment.A helium plasma jet,with a pin electrode powered by a continuous sine wave at a frequency of 330 k Hz,formed a streamer that was in contact with a distilled water sample.An electrical circuit allowed the monitoring of electrical signals supplied to the jet and also to the plasma itself.An electrical characterisation together with power consumption measurements was obtained by using two different methods.The first method was based on the direct measurements of voltage and current signals,while in the second method we used'Lissajous figures'.We compared these two methods when used for discharge power estimation and addressed their advantages and limitations.The results showed that both of these methods could be used to successfully determine power consumed by a discharge in contact with water,but only when taking into account power dissipation without plasma.
基金partially supported by the ZE Research Program IAE(No.ZE2021B-27)the joint usage/research program cLPS(No.21020)。
文摘This study proposes polyvinyl alcohol–potassium iodide(PVA–KI)as a novel gel chemical probe.The probe uses the reactions among PVA,KI,water,borax,and oxidative species to visualize the distribution of reactive species.This method provides information regarding the distribution of reactive species by coloration on the gel surface.The effects of the surrounding gas phase on the distribution and diffusion of the reactive species are also investigated using the PVA–KI gel probe.Further,the relationship between the irradiation distance and reactive species diffusion is determined on the surface of the PVA–KI probe with and without plastic shielding.Adjusting the irradiation distance appropriately leads to an increase in the modified area as detected by the PVA–KI gel probe analysis.The relative concentration distributions of the reactive species are also obtained from visualized color distributions measured using a colorimeter.Furthermore,reactive species generation by long-scale line plasma is confirmed by the color reaction on the PVA–KI gel surface,with a greater area being covered by an atmospheric-pressure pulsed microwave line plasma source.