Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currentl...Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods.展开更多
Hot carrier effects of p MOSFETs with different oxide thicknesses are studied in low gate voltage range.All electrical parameters follow a power law relationship with stress time,but degradation slope is dependent ...Hot carrier effects of p MOSFETs with different oxide thicknesses are studied in low gate voltage range.All electrical parameters follow a power law relationship with stress time,but degradation slope is dependent on gate voltage.For the devices with thicker oxides,saturated drain current degradation has a close relationship with the product of gate current and electron fluence.For small dimensional devices,saturated drain current degradation has a close relationship with the electron fluence.This degradation model is valid for p MOSFETs with 0 25μm channel length and different gate oxide thicknesses.展开更多
In order to achieve better perceptual coding quality while using fewer bits, a novel perceptual video coding method based on the just-noticeable-distortion (JND) model and the auto-regressive (AR) model is explore...In order to achieve better perceptual coding quality while using fewer bits, a novel perceptual video coding method based on the just-noticeable-distortion (JND) model and the auto-regressive (AR) model is explored. First, a new texture segmentation method exploiting the JND profile is devised to detect and classify texture regions in video scenes. In this step, a spatial-temporal JND model is proposed and the JND energy of every micro-block unit is computed and compared with the threshold. Secondly, in order to effectively remove temporal redundancies while preserving high visual quality, an AR model is applied to synthesize the texture regions. All the parameters of the AR model are obtained by the least-squares method and each pixel in the texture region is generated as a linear combination of pixels taken from the closest forward and backward reference frames. Finally, the proposed method is compared with the H.264/AVC video coding system to demonstrate the performance. Various sequences with different types of texture regions are used in the experiment and the results show that the proposed method can reduce the bit-rate by 15% to 58% while maintaining good perceptual quality.展开更多
In this article we study the empirical likelihood inference for AR(p) model. We propose the moment restrictions, by which we get the empirical likelihood estimator of the model parametric, and we also propose an emp...In this article we study the empirical likelihood inference for AR(p) model. We propose the moment restrictions, by which we get the empirical likelihood estimator of the model parametric, and we also propose an empirical log-likelihood ratio base on this estimator. Our result shows that the EL estimator is asymptotically normal, and the empirical log-likelihood ratio is proved to be asymptotically standard chi-squared.展开更多
Conventional f-x prediction filtering methods are based on an autoregressive model. The error section is first computed as a source noise but is removed as additive noise to obtain the signal, which results in an assu...Conventional f-x prediction filtering methods are based on an autoregressive model. The error section is first computed as a source noise but is removed as additive noise to obtain the signal, which results in an assumption inconsistency before and after filtering. In this paper, an autoregressive, moving-average model is employed to avoid the model inconsistency. Based on the ARMA model, a noncasual prediction filter is computed and a self-deconvolved projection filter is used for estimating additive noise in order to suppress random noise. The 1-D ARMA model is also extended to the 2-D spatial domain, which is the basis for noncasual spatial prediction filtering for random noise attenuation on 3-D seismic data. Synthetic and field data processing indicate this method can suppress random noise more effectively and preserve the signal simultaneously and does much better than other conventional prediction filtering methods.展开更多
The field experiments were carried out to investigate the dynamics and models of N, P and K absorption for the cotton plants with a lint of 3 000 kg ha-1 in Xinjiang. The main results were as follows: The contents of ...The field experiments were carried out to investigate the dynamics and models of N, P and K absorption for the cotton plants with a lint of 3 000 kg ha-1 in Xinjiang. The main results were as follows: The contents of N, P2O5, K2O in cotton leaves, stems, squares and bolls decreased obviously with the time over the whole growth duration and the falling extent was greater in high-yield cotton than in CK. Contents of N in leaves, squares and bolls, in particular in the leaves of fruit-bearing shoot was higher in high-yield cotton than in CK. Contents of P2O5 in squares and bolls and that of K2O in stems were higher in high-yield cotton than in CK during the whole growing period. The accumulations of N, P2O5 and K2O in the cotton plants could be described with a logistic curve equation. There was the fastest nutrient uptake at about 90 d for N, 92 d for P2O5 and 85 d for K2O after emergence, respectively. Total nutrient accumulation of N, P2O5 and K2O was 385.8, 244. 7 and 340.3 kg ha-1, respectively. Approximately 12. 5 kg N, 8. 0 kg P2O5 and 11.1 kg K2O were needed for producing 100 kg lint with the leaves and stems under the super high yield condition of 3 000 kg ha-1 in Xinjiang.展开更多
The identification of the inter-electrode gap size in the high frequency group pulse micro-electrochemical machining (HGPECM) is mainly discussed. The auto-regressive(AR) model of group pulse current flowing acros...The identification of the inter-electrode gap size in the high frequency group pulse micro-electrochemical machining (HGPECM) is mainly discussed. The auto-regressive(AR) model of group pulse current flowing across the cathode and the anode are created under different situations with different processing parameters and inter-electrode gap size. The AR model based on the current signals indicates that the order of the AR model is obviously different relating to the different processing conditions and the inter-electrode gap size; Moreover, it is different about the stability of the dynamic system, i.e. the white noise response of the Green's function of the dynamic system is diverse. In addition, power spectrum method is used in the analysis of the dynamic time series about the current signals with different inter-electrode gap size, the results show that there exists a strongest power spectrum peak, characteristic power spectrum(CPS), to the current signals related to the different inter-electrode gap size in the range of 0~5 kHz. Therefore, the CPS of current signals can implement the identification of the inter-electrode gap.展开更多
Based on the weekly closing price of Shenzhen Integrated Index, this article studies the volatility of Shenzhen Stock Market using three different models: Logistic, AR(1) and AR(2). The time-variable parameters o...Based on the weekly closing price of Shenzhen Integrated Index, this article studies the volatility of Shenzhen Stock Market using three different models: Logistic, AR(1) and AR(2). The time-variable parameters of Logistic regression model is estimated by using both the index smoothing method and the time-variable parameter estimation method. And both the AR(1) model and the AR(2) model of zero-mean series of the weekly dosing price and its zero-mean series of volatility rate are established based on the analysis results of zero-mean series of the weekly closing price, Six common statistical methods for error prediction are used to test the predicting results. These methods are: mean error (ME), mean absolute error (MAE), root mean squared error (RMSE), mean absolute percentage error (MAPE), Akaike's information criterion (AIC), and Bayesian information criterion (BIC). The investigation shows that AR(1) model exhibits the best predicting result, whereas AR(2) model exhibits predicting results that is intermediate between AR(1) model and the Logistic regression model.展开更多
During high-intensity focused ultrasound(HIFU)treatment,the accurate identification of denatured biological tissue is an important practical problem.In this paper,a novel method based on the improved variational mode ...During high-intensity focused ultrasound(HIFU)treatment,the accurate identification of denatured biological tissue is an important practical problem.In this paper,a novel method based on the improved variational mode decomposition(IVMD)and autoregressive(AR)model was proposed,which identified denatured biological tissue according to the characteristics of ultrasonic scattered echo signals during HIFU treatment.Firstly,the IVMD method was proposed to solve the problem that the VMD reconstruction signal still has noise due to the limited number of intrinsic mode functions(IMF).The ultrasonic scattered echo signals were reconstructed by the IVMD to achieve denoising.Then,the AR model was introduced to improve the recognition rate of denatured biological tissues.The AR model order parameter was determined by the Akaike information criterion(AIC)and the characteristics of the AR coefficients were extracted.Finally,the optimal characteristics of the AR coefficients were selected according to the results of receiver operating characteristic(ROC).The experiments showed that the signal-to-noise ratio(SNR)and root mean square error(RMSE)of the reconstructed signal obtained by IVMD was better than those obtained by variational mode decomposition(VMD).The IVMD-AR method was applied to the actual ultrasonic scattered echo signals during HIFU treatment,and the support vectormachine(SVM)was used to identify the denatured biological tissue.The results show that compared with sample entropy,information entropy,and energy methods,the proposed IVMD-AR method can more effectively identify denatured biological tissue.The recognition rate of denatured biological tissue was higher,up to 93.0%.展开更多
A particle filtering based AutoRegressive (AR) channel prediction model is presented for cognitive radio systems. Firstly, this paper introduces the particle filtering and the system model. Secondly, the AR model of o...A particle filtering based AutoRegressive (AR) channel prediction model is presented for cognitive radio systems. Firstly, this paper introduces the particle filtering and the system model. Secondly, the AR model of order p is used to approximate the flat Rayleigh fading channels; its stability is discussed, and an algorithm for solving the AR model parameters is also given. Finally, an AR channel prediction model based on particle filtering and second-order AR model is presented. Simulation results show that the performance of the proposed AR channel prediction model based on particle filtering is better than that of Kalman filtering.展开更多
The study addresses the integration of the Building Information Modelling (BIM) methodology with Virtual Reality (VR) and Augmented Reality (AR) technologies in the context of the development of a multidisciplinary pr...The study addresses the integration of the Building Information Modelling (BIM) methodology with Virtual Reality (VR) and Augmented Reality (AR) technologies in the context of the development of a multidisciplinary project, involving architecture, structures, water network and electrical system components. In order to cover in detail the various design features, the case study was limited to a specific area of a house, the sanitary rooms, as it presents sufficient complexity in modeling and the application of VR and AR software. The VR/AR functionalities applied over the BIM model increase the potential of BIM in the construction sector, contributing to the achievement of a high level of collaboration and control of the project based on an immersive and interactive environment. The elaboration of the different phases of a BIM design requires the transfer of models between BIM and VR/AR systems, allowing us to analyze the main advantages that BIM/VR/AR integration can introduce in the construction industry. The study contributes positively to achieving new knowledge in BIM, being disseminated in an academic research work and illustrated in a practical context.展开更多
Metapelite is one of the predominant rock types in the high-pressure–ultrahigh-pressure(HP–UHP) metamorphic belt of western Tianshan, NW China; however, the spatial and temporal variations of this belt during meta...Metapelite is one of the predominant rock types in the high-pressure–ultrahigh-pressure(HP–UHP) metamorphic belt of western Tianshan, NW China; however, the spatial and temporal variations of this belt during metamorphism are poorly understood. In this study, we present comparative petrological studies and 40^Ar/39 ^Ar geochronology of HP and UHP pelitic schist exposed along the Habutengsu valley. The schist mainly comprises quartz, white mica, garnet, albite and bluish amphibole. In the Mn O–Na2O–Ca O–K2O–Fe O–Mg O–Al2O3–Si O2–H2O(Mn NCKFMASH) system, P–T pseudosections were constructed using THERMOCALC 333 for two representative pelitic schists. The results demonstrate that there was a break in the peak metamorphic pressures in the Habutengsu area. The northern schist has experienced UHP metamorphism, consistent with the presence of coesite in the same section, while the southern one formed at lower pressures that stabilized the quartz. This result supports the previous finding of a metamorphic gradient through the HP–UHP metamorphic belt of the Chinese western Tianshan by the authors. Additionally, phengite in the northern schist was modelled as having a Si content of 3.55–3.70(a.p.f.u.) at the peak stage, a value much higher than that of oriented matrix phengite(Si content 3.32–3.38 a.p.f.u.). This indicates that the phengite flakes in the UHP schist were subjected to recrystallization during exhumation, which is consistent with the presence of phengite aggregates surrounding garnet porphyroblast. The 40^Ar/39^ Ar age spectra of white mica(dominantly phengite) from the two schists exhibit similar plateau ages of ca. 315 Ma, which is interpreted as the timing of a tectonometamorphic event that occurred during the exhumation of the HP–UHP metamorphic belt of the Chinese western Tianshan.展开更多
The Varzaghan district at the northwestern margin of the Urumieh–Dokhtar magmatic arc, is considered a promising area for the exploration of porphyry Cu deposits in Iran. In this study we identified mono-and multi-el...The Varzaghan district at the northwestern margin of the Urumieh–Dokhtar magmatic arc, is considered a promising area for the exploration of porphyry Cu deposits in Iran. In this study we identified mono-and multi-element geochemical anomalies associated with Cu–Au–Mo–Bi mineralization in the central parts of the Varzaghan district by applying the concentration–area fractal method. After mono-element geochemical investigations, principal component analysis was applied to ten selected elements in order to acquire a multi-element geochemical signature based on the mineralization-related component. Quantitative comparisons of the obtained fractal-based populations were carried out in accordance with known Cu occurrences using Student's t-values. Then,significant mono-and multi-element geochemical layers were separately combined with related geologic and structural layers to generate prospectivity models, using the fuzzy GAMMA approach. For quantitative evaluation of the effectiveness of different geochemical signatures in final prospectivity models, a prediction-area plot was adapted. The results show that the multi-element geochemical signature of principal component one(PC1) is more effective than mono-element layers in delimiting exploration targets related to porphyry Cu deposits.展开更多
Broadcasting is a basic technique in Mobile ad-hoc network(MANET),and it refers to sending a packet from one node to every other node within the transmission range.Flooding is a type of broadcast where the received pa...Broadcasting is a basic technique in Mobile ad-hoc network(MANET),and it refers to sending a packet from one node to every other node within the transmission range.Flooding is a type of broadcast where the received packet is retransmitted once by every node.The naive flooding technique,floods the network with query messages,while the random walk technique operates by contacting the subsets of every node’s neighbors at each step,thereby restricting the search space.One of the key challenges in an ad-hoc network is the resource or content discovery problem which is about locating the queried resource.Many earlier works have mainly focused on the simulation-based analysis of flooding,and its variants under a wired network.Although,there have been some empirical studies in peer-to-peer(P2P)networks,the analytical results are still lacking,especially in the context of P2P systems running over MANET.In this paper,we describe how P2P resource discovery protocols perform badly over MANETs.To address the limitations,we propose a new protocol named ABRW(Address Broadcast Random Walk),which is a lightweight search approach,designed considering the underlay topology aimed to better suit the unstructured architecture.We provide the mathematical model,measuring the performance of our proposed search scheme with different widely popular benchmarked search techniques.Further,we also derive three relevant search performance metrics,i.e.,mean no.of steps needed to find a resource,the probability of finding a resource,and the mean no.of message overhead.We validated the analytical expressions through simulations.The simulation results closely matched with our analyticalmodel,justifying our findings.Our proposed search algorithm under such highly dynamic self-evolving networks performed better,as it reduced the search latency,decreased the overall message overhead,and still equally had a good success rate.展开更多
For the problem of large network load generated by the Gnutella resource-searching model in Peer to Peer (P2P) network, a improved model to decrease the network expense is proposed, which establishes a duster in P2P...For the problem of large network load generated by the Gnutella resource-searching model in Peer to Peer (P2P) network, a improved model to decrease the network expense is proposed, which establishes a duster in P2P network, auto-organizes logical layers, and applies a hybrid mechanism of directional searching and flooding. The performance analysis and simulation results show that the proposed hierarchical searching model has availably reduced the generated message load and that its searching-response time performance is as fairly good as that of the Gnutella model.展开更多
In the scope of solar energy-based electrical needs in rural tropical regions, the present article develops and confronts experimental power models from the using of manufacturer data and a new model made with the met...In the scope of solar energy-based electrical needs in rural tropical regions, the present article develops and confronts experimental power models from the using of manufacturer data and a new model made with the meteorological and electrical data acquired. These data are registered through an acquisition station around a monocrystalline photovoltaic panel, designed and realized in the scope of this work. After the acquisition of meteorological data, a choice of the most relevant meteorological variable as input vectors to express the output powers obtained was carried out. Around the Single-Diode model, seven models are performed with analytics equations, iterative methods and an optimization method with a multi-objective function to get internal parameters. The proposed experimental model is made by a combination of the solution got at STC of an iterative method, with the value of nameplate and the use of an open circuit voltage equation with experimental coefficient to predict power output in operating conditions, and it’s demonstrated more efficient. The optimization of a multi-objective function using Nonlinear Squares (NLS) through the Leveng-Marqued method to solve the parameter estimation of a PV panel has been well done and the results are useful, like classic iterative method and less time-consuming.展开更多
基金supported by National Natural Science Foundation of China,China(No.42004016)HuBei Natural Science Fund,China(No.2020CFB329)+1 种基金HuNan Natural Science Fund,China(No.2023JJ60559,2023JJ60560)the State Key Laboratory of Geodesy and Earth’s Dynamics self-deployment project,China(No.S21L6101)。
文摘Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods.
文摘Hot carrier effects of p MOSFETs with different oxide thicknesses are studied in low gate voltage range.All electrical parameters follow a power law relationship with stress time,but degradation slope is dependent on gate voltage.For the devices with thicker oxides,saturated drain current degradation has a close relationship with the product of gate current and electron fluence.For small dimensional devices,saturated drain current degradation has a close relationship with the electron fluence.This degradation model is valid for p MOSFETs with 0 25μm channel length and different gate oxide thicknesses.
基金The National Natural Science Foundation of China (No.60472058, 60975017)
文摘In order to achieve better perceptual coding quality while using fewer bits, a novel perceptual video coding method based on the just-noticeable-distortion (JND) model and the auto-regressive (AR) model is explored. First, a new texture segmentation method exploiting the JND profile is devised to detect and classify texture regions in video scenes. In this step, a spatial-temporal JND model is proposed and the JND energy of every micro-block unit is computed and compared with the threshold. Secondly, in order to effectively remove temporal redundancies while preserving high visual quality, an AR model is applied to synthesize the texture regions. All the parameters of the AR model are obtained by the least-squares method and each pixel in the texture region is generated as a linear combination of pixels taken from the closest forward and backward reference frames. Finally, the proposed method is compared with the H.264/AVC video coding system to demonstrate the performance. Various sequences with different types of texture regions are used in the experiment and the results show that the proposed method can reduce the bit-rate by 15% to 58% while maintaining good perceptual quality.
文摘In this article we study the empirical likelihood inference for AR(p) model. We propose the moment restrictions, by which we get the empirical likelihood estimator of the model parametric, and we also propose an empirical log-likelihood ratio base on this estimator. Our result shows that the EL estimator is asymptotically normal, and the empirical log-likelihood ratio is proved to be asymptotically standard chi-squared.
基金This research was financially supported by National Natural Science Foundation of China (Grant No. 40604016) and the National Hi-Tech Research and Development Program (863 Program) (Grants No. 2006AA09A102-09 and No. 2007AA06Z229).
文摘Conventional f-x prediction filtering methods are based on an autoregressive model. The error section is first computed as a source noise but is removed as additive noise to obtain the signal, which results in an assumption inconsistency before and after filtering. In this paper, an autoregressive, moving-average model is employed to avoid the model inconsistency. Based on the ARMA model, a noncasual prediction filter is computed and a self-deconvolved projection filter is used for estimating additive noise in order to suppress random noise. The 1-D ARMA model is also extended to the 2-D spatial domain, which is the basis for noncasual spatial prediction filtering for random noise attenuation on 3-D seismic data. Synthetic and field data processing indicate this method can suppress random noise more effectively and preserve the signal simultaneously and does much better than other conventional prediction filtering methods.
基金supported by the National Key Technologies R&D Program in 10th Five-year Plan of China(2001BA507A)the National Natural Sicence Foundation of China(39760040).
文摘The field experiments were carried out to investigate the dynamics and models of N, P and K absorption for the cotton plants with a lint of 3 000 kg ha-1 in Xinjiang. The main results were as follows: The contents of N, P2O5, K2O in cotton leaves, stems, squares and bolls decreased obviously with the time over the whole growth duration and the falling extent was greater in high-yield cotton than in CK. Contents of N in leaves, squares and bolls, in particular in the leaves of fruit-bearing shoot was higher in high-yield cotton than in CK. Contents of P2O5 in squares and bolls and that of K2O in stems were higher in high-yield cotton than in CK during the whole growing period. The accumulations of N, P2O5 and K2O in the cotton plants could be described with a logistic curve equation. There was the fastest nutrient uptake at about 90 d for N, 92 d for P2O5 and 85 d for K2O after emergence, respectively. Total nutrient accumulation of N, P2O5 and K2O was 385.8, 244. 7 and 340.3 kg ha-1, respectively. Approximately 12. 5 kg N, 8. 0 kg P2O5 and 11.1 kg K2O were needed for producing 100 kg lint with the leaves and stems under the super high yield condition of 3 000 kg ha-1 in Xinjiang.
基金This project is supported by the 10th Five-year Plan Pre-research Project Foundation of China Weapon Industry Company, China(No.42001080701).
文摘The identification of the inter-electrode gap size in the high frequency group pulse micro-electrochemical machining (HGPECM) is mainly discussed. The auto-regressive(AR) model of group pulse current flowing across the cathode and the anode are created under different situations with different processing parameters and inter-electrode gap size. The AR model based on the current signals indicates that the order of the AR model is obviously different relating to the different processing conditions and the inter-electrode gap size; Moreover, it is different about the stability of the dynamic system, i.e. the white noise response of the Green's function of the dynamic system is diverse. In addition, power spectrum method is used in the analysis of the dynamic time series about the current signals with different inter-electrode gap size, the results show that there exists a strongest power spectrum peak, characteristic power spectrum(CPS), to the current signals related to the different inter-electrode gap size in the range of 0~5 kHz. Therefore, the CPS of current signals can implement the identification of the inter-electrode gap.
基金The research is supported by the National Natural Science Foundation of China (60574069)the Soft Science Foundation of Guangdong Province (2005B70101044)
文摘Based on the weekly closing price of Shenzhen Integrated Index, this article studies the volatility of Shenzhen Stock Market using three different models: Logistic, AR(1) and AR(2). The time-variable parameters of Logistic regression model is estimated by using both the index smoothing method and the time-variable parameter estimation method. And both the AR(1) model and the AR(2) model of zero-mean series of the weekly dosing price and its zero-mean series of volatility rate are established based on the analysis results of zero-mean series of the weekly closing price, Six common statistical methods for error prediction are used to test the predicting results. These methods are: mean error (ME), mean absolute error (MAE), root mean squared error (RMSE), mean absolute percentage error (MAPE), Akaike's information criterion (AIC), and Bayesian information criterion (BIC). The investigation shows that AR(1) model exhibits the best predicting result, whereas AR(2) model exhibits predicting results that is intermediate between AR(1) model and the Logistic regression model.
基金The authors thank the financial support of Natural Science Foundation of China(U2031112)Natural Science Foundation of Hunan Province(2021JJ30469)Natural Science Youth Foundation of Hunan Province(2020JJ5396).
文摘During high-intensity focused ultrasound(HIFU)treatment,the accurate identification of denatured biological tissue is an important practical problem.In this paper,a novel method based on the improved variational mode decomposition(IVMD)and autoregressive(AR)model was proposed,which identified denatured biological tissue according to the characteristics of ultrasonic scattered echo signals during HIFU treatment.Firstly,the IVMD method was proposed to solve the problem that the VMD reconstruction signal still has noise due to the limited number of intrinsic mode functions(IMF).The ultrasonic scattered echo signals were reconstructed by the IVMD to achieve denoising.Then,the AR model was introduced to improve the recognition rate of denatured biological tissues.The AR model order parameter was determined by the Akaike information criterion(AIC)and the characteristics of the AR coefficients were extracted.Finally,the optimal characteristics of the AR coefficients were selected according to the results of receiver operating characteristic(ROC).The experiments showed that the signal-to-noise ratio(SNR)and root mean square error(RMSE)of the reconstructed signal obtained by IVMD was better than those obtained by variational mode decomposition(VMD).The IVMD-AR method was applied to the actual ultrasonic scattered echo signals during HIFU treatment,and the support vectormachine(SVM)was used to identify the denatured biological tissue.The results show that compared with sample entropy,information entropy,and energy methods,the proposed IVMD-AR method can more effectively identify denatured biological tissue.The recognition rate of denatured biological tissue was higher,up to 93.0%.
基金Supported by National Natural Science Foundation of China (No. 60972038)The Open Research Fund of Na-tional Mobile Communications Research Laboratory, Southeast University (N200911)+3 种基金The Jiangsu Province Universities Natural Science Research Key Grant Project (No. 07KJA51006)ZTE Communications Co., Ltd. (Shenzhen) Huawei Technology Co., Ltd. (Shenzhen)The Research Fund of Nanjing College of Traffic Voca-tional Technology (JY0903)
文摘A particle filtering based AutoRegressive (AR) channel prediction model is presented for cognitive radio systems. Firstly, this paper introduces the particle filtering and the system model. Secondly, the AR model of order p is used to approximate the flat Rayleigh fading channels; its stability is discussed, and an algorithm for solving the AR model parameters is also given. Finally, an AR channel prediction model based on particle filtering and second-order AR model is presented. Simulation results show that the performance of the proposed AR channel prediction model based on particle filtering is better than that of Kalman filtering.
文摘The study addresses the integration of the Building Information Modelling (BIM) methodology with Virtual Reality (VR) and Augmented Reality (AR) technologies in the context of the development of a multidisciplinary project, involving architecture, structures, water network and electrical system components. In order to cover in detail the various design features, the case study was limited to a specific area of a house, the sanitary rooms, as it presents sufficient complexity in modeling and the application of VR and AR software. The VR/AR functionalities applied over the BIM model increase the potential of BIM in the construction sector, contributing to the achievement of a high level of collaboration and control of the project based on an immersive and interactive environment. The elaboration of the different phases of a BIM design requires the transfer of models between BIM and VR/AR systems, allowing us to analyze the main advantages that BIM/VR/AR integration can introduce in the construction industry. The study contributes positively to achieving new knowledge in BIM, being disseminated in an academic research work and illustrated in a practical context.
基金financially supported by National Natural Science Foundation of China(Nos 41372004,41330210,41121062)
文摘Metapelite is one of the predominant rock types in the high-pressure–ultrahigh-pressure(HP–UHP) metamorphic belt of western Tianshan, NW China; however, the spatial and temporal variations of this belt during metamorphism are poorly understood. In this study, we present comparative petrological studies and 40^Ar/39 ^Ar geochronology of HP and UHP pelitic schist exposed along the Habutengsu valley. The schist mainly comprises quartz, white mica, garnet, albite and bluish amphibole. In the Mn O–Na2O–Ca O–K2O–Fe O–Mg O–Al2O3–Si O2–H2O(Mn NCKFMASH) system, P–T pseudosections were constructed using THERMOCALC 333 for two representative pelitic schists. The results demonstrate that there was a break in the peak metamorphic pressures in the Habutengsu area. The northern schist has experienced UHP metamorphism, consistent with the presence of coesite in the same section, while the southern one formed at lower pressures that stabilized the quartz. This result supports the previous finding of a metamorphic gradient through the HP–UHP metamorphic belt of the Chinese western Tianshan by the authors. Additionally, phengite in the northern schist was modelled as having a Si content of 3.55–3.70(a.p.f.u.) at the peak stage, a value much higher than that of oriented matrix phengite(Si content 3.32–3.38 a.p.f.u.). This indicates that the phengite flakes in the UHP schist were subjected to recrystallization during exhumation, which is consistent with the presence of phengite aggregates surrounding garnet porphyroblast. The 40^Ar/39^ Ar age spectra of white mica(dominantly phengite) from the two schists exhibit similar plateau ages of ca. 315 Ma, which is interpreted as the timing of a tectonometamorphic event that occurred during the exhumation of the HP–UHP metamorphic belt of the Chinese western Tianshan.
文摘The Varzaghan district at the northwestern margin of the Urumieh–Dokhtar magmatic arc, is considered a promising area for the exploration of porphyry Cu deposits in Iran. In this study we identified mono-and multi-element geochemical anomalies associated with Cu–Au–Mo–Bi mineralization in the central parts of the Varzaghan district by applying the concentration–area fractal method. After mono-element geochemical investigations, principal component analysis was applied to ten selected elements in order to acquire a multi-element geochemical signature based on the mineralization-related component. Quantitative comparisons of the obtained fractal-based populations were carried out in accordance with known Cu occurrences using Student's t-values. Then,significant mono-and multi-element geochemical layers were separately combined with related geologic and structural layers to generate prospectivity models, using the fuzzy GAMMA approach. For quantitative evaluation of the effectiveness of different geochemical signatures in final prospectivity models, a prediction-area plot was adapted. The results show that the multi-element geochemical signature of principal component one(PC1) is more effective than mono-element layers in delimiting exploration targets related to porphyry Cu deposits.
文摘Broadcasting is a basic technique in Mobile ad-hoc network(MANET),and it refers to sending a packet from one node to every other node within the transmission range.Flooding is a type of broadcast where the received packet is retransmitted once by every node.The naive flooding technique,floods the network with query messages,while the random walk technique operates by contacting the subsets of every node’s neighbors at each step,thereby restricting the search space.One of the key challenges in an ad-hoc network is the resource or content discovery problem which is about locating the queried resource.Many earlier works have mainly focused on the simulation-based analysis of flooding,and its variants under a wired network.Although,there have been some empirical studies in peer-to-peer(P2P)networks,the analytical results are still lacking,especially in the context of P2P systems running over MANET.In this paper,we describe how P2P resource discovery protocols perform badly over MANETs.To address the limitations,we propose a new protocol named ABRW(Address Broadcast Random Walk),which is a lightweight search approach,designed considering the underlay topology aimed to better suit the unstructured architecture.We provide the mathematical model,measuring the performance of our proposed search scheme with different widely popular benchmarked search techniques.Further,we also derive three relevant search performance metrics,i.e.,mean no.of steps needed to find a resource,the probability of finding a resource,and the mean no.of message overhead.We validated the analytical expressions through simulations.The simulation results closely matched with our analyticalmodel,justifying our findings.Our proposed search algorithm under such highly dynamic self-evolving networks performed better,as it reduced the search latency,decreased the overall message overhead,and still equally had a good success rate.
文摘For the problem of large network load generated by the Gnutella resource-searching model in Peer to Peer (P2P) network, a improved model to decrease the network expense is proposed, which establishes a duster in P2P network, auto-organizes logical layers, and applies a hybrid mechanism of directional searching and flooding. The performance analysis and simulation results show that the proposed hierarchical searching model has availably reduced the generated message load and that its searching-response time performance is as fairly good as that of the Gnutella model.
文摘In the scope of solar energy-based electrical needs in rural tropical regions, the present article develops and confronts experimental power models from the using of manufacturer data and a new model made with the meteorological and electrical data acquired. These data are registered through an acquisition station around a monocrystalline photovoltaic panel, designed and realized in the scope of this work. After the acquisition of meteorological data, a choice of the most relevant meteorological variable as input vectors to express the output powers obtained was carried out. Around the Single-Diode model, seven models are performed with analytics equations, iterative methods and an optimization method with a multi-objective function to get internal parameters. The proposed experimental model is made by a combination of the solution got at STC of an iterative method, with the value of nameplate and the use of an open circuit voltage equation with experimental coefficient to predict power output in operating conditions, and it’s demonstrated more efficient. The optimization of a multi-objective function using Nonlinear Squares (NLS) through the Leveng-Marqued method to solve the parameter estimation of a PV panel has been well done and the results are useful, like classic iterative method and less time-consuming.