期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一个bocs的表示范畴(Ⅰ)──象元和射元
被引量:
4
1
作者
张英伯
雷天刚
《北京师范大学学报(自然科学版)》
CAS
CSCD
1995年第3期313-316,共4页
在Artin代数的表示理论中,Crawley-Boevey证明了一个著名的定理:“令A是一个代数闭域上的有限维代数,如果A是表示Tame型的,则对任意固定的维数d,几乎所有的维数小于等于d的模具有性质DTrM≈M.”...
在Artin代数的表示理论中,Crawley-Boevey证明了一个著名的定理:“令A是一个代数闭域上的有限维代数,如果A是表示Tame型的,则对任意固定的维数d,几乎所有的维数小于等于d的模具有性质DTrM≈M.”在证明这一定理的逆定理的过程中,出现了一个有趣的bocs(A,V),定义在一个代数闭域k上,带有layerL=(A';ω;α,v),A'的不可分解象元集仅由单个元{X}组成,也就是说,A是局部的,其中A'(X,X)=k,微分是δ(x)=0,δ(a)=xv-vx,δ(v)=0.一般来说,一个bocs的表示范畴是很难把握的,它是加性的,但不是Abel范畴。因而没有正合性,更谈不到几乎可裂序列.但是在这个特殊的bocs的表示范畴中,我们能构造出若干类象元M,及其始于且终于M的几乎可裂序列,也就是说,这类象元具有性质:DTr(W)≈M,这篇文章刻划bocs的表示范畴的象元和射元.
展开更多
关键词
BOCS
不可分解象元
射元
范畴
象元
下载PDF
职称材料
题名
一个bocs的表示范畴(Ⅰ)──象元和射元
被引量:
4
1
作者
张英伯
雷天刚
机构
北京师范大学数学系
出处
《北京师范大学学报(自然科学版)》
CAS
CSCD
1995年第3期313-316,共4页
文摘
在Artin代数的表示理论中,Crawley-Boevey证明了一个著名的定理:“令A是一个代数闭域上的有限维代数,如果A是表示Tame型的,则对任意固定的维数d,几乎所有的维数小于等于d的模具有性质DTrM≈M.”在证明这一定理的逆定理的过程中,出现了一个有趣的bocs(A,V),定义在一个代数闭域k上,带有layerL=(A';ω;α,v),A'的不可分解象元集仅由单个元{X}组成,也就是说,A是局部的,其中A'(X,X)=k,微分是δ(x)=0,δ(a)=xv-vx,δ(v)=0.一般来说,一个bocs的表示范畴是很难把握的,它是加性的,但不是Abel范畴。因而没有正合性,更谈不到几乎可裂序列.但是在这个特殊的bocs的表示范畴中,我们能构造出若干类象元M,及其始于且终于M的几乎可裂序列,也就是说,这类象元具有性质:DTr(W)≈M,这篇文章刻划bocs的表示范畴的象元和射元.
关键词
BOCS
不可分解象元
射元
范畴
象元
Keywords
bocs
ar-transformation dt_r
indecomposable objects
分类号
O154 [理学—基础数学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
一个bocs的表示范畴(Ⅰ)──象元和射元
张英伯
雷天刚
《北京师范大学学报(自然科学版)》
CAS
CSCD
1995
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部