为了解决传统农机导航系统中前轮转角测量传感器不易安装、维护困难以及转角估计不准确等问题,本文提出了一种基于受控自回归滑动平均模型和卡尔曼滤波器的组合模型(Auto-regressive moving average with exogenous input-Kalman filter...为了解决传统农机导航系统中前轮转角测量传感器不易安装、维护困难以及转角估计不准确等问题,本文提出了一种基于受控自回归滑动平均模型和卡尔曼滤波器的组合模型(Auto-regressive moving average with exogenous input-Kalman filter,ARMAX-KF)与速度补偿的拖拉机无前轮传感器转角估计方法。首先,利用Hammerstein非线性系统对拖拉机的转向系统建模,并采用递归最小二乘法(Recursive least squares method,RLS)将其辨识为ARMAX模型;其次,对后轮轴中心接地点速度进行杆臂误差补偿;最后,提出了ARMAX-KF方法,利用卡尔曼滤波器的校正特性,以拖拉机的运动学转角作为观测值,修正ARMAX模型预测的转角速度积分值,从而估计拖拉机的前轮转角。在速度杆臂补偿测量方法试验验证中,补偿后运动学转角平均绝对误差为1.110°,标准差为1.727°,相比补偿前分别减少61.13%和31.55%;在动态转角试验中,ARMAX模型预测的转角速度标准差为2.439(°)/s,相比采用固定传动比方法误差减少56.58%;采用基于ARMAX-KF的前轮转角估计绝对平均误差为0.649°,标准差为0.371°,相比采用固定传动比和卡尔曼滤波器的方法分别减少56.9%和78.82%;在直线导航跟踪试验中,采用基于ARMAX-KF的前轮转角估计标准差为0.649°,本文提出的方法提高了转角估计精度和农机导航作业质量。展开更多
This paper gives a definition of identifiability for multidimensional linear input-output systems and presents a necessary and sufficient condition for its satisfaction.For a class of identifiable systems it is also s...This paper gives a definition of identifiability for multidimensional linear input-output systems and presents a necessary and sufficient condition for its satisfaction.For a class of identifiable systems it is also shown that the unknown coeffcients of the system can consistently be estimated by a recursive algorithm.展开更多
New method for computing the predicting function of the ARMAX model is proposed. The proposed method constructs a set of schemes for recursively computing the parameters in predicting function of the ARMAX model. In c...New method for computing the predicting function of the ARMAX model is proposed. The proposed method constructs a set of schemes for recursively computing the parameters in predicting function of the ARMAX model. In contrast to the existing method, that only gives results for the special case of the ARX model, the method presented is suitable not only for an SISO system, but also for an MIMO system. For the SISO system, the method presented here is even more convenient than the exisiting ones.展开更多
伴随着新能源产业的飞速发展,锂离子动力电池作为一种高效的储能方式,已成为电动汽车的重要组成部分。在电池管理系统的功能中,电池的高精度建模至关重要。在实际应用中,电池不是一个线性系统,其输入和输出由于外部扰动等原因表现出非...伴随着新能源产业的飞速发展,锂离子动力电池作为一种高效的储能方式,已成为电动汽车的重要组成部分。在电池管理系统的功能中,电池的高精度建模至关重要。在实际应用中,电池不是一个线性系统,其输入和输出由于外部扰动等原因表现出非线性特征,从而直接影响参数识别效果,进而影响模型精度。鉴于此,本文对锂离子动力电池进行了Hammerstein-ARMAX(Autoregressive MovingAverage with Extra Input)模型构建,并对模型参数的估计方法进行研究,旨在提高模型的准确性。实验结果表明了该方法的有效性。展开更多
针对带有外生变量的自回归移动平均模型(Autoregressive moving average with exogenous variable,ARMAX)的参数辨识问题提出一种两阶段辨识方法.首先通过偏差消除最小二乘方法辨识带有外生变量的自回归部分(Autoregressive part with e...针对带有外生变量的自回归移动平均模型(Autoregressive moving average with exogenous variable,ARMAX)的参数辨识问题提出一种两阶段辨识方法.首先通过偏差消除最小二乘方法辨识带有外生变量的自回归部分(Autoregressive part with exogenous variable,ARX),然后采用Durbin方法将移动平均部分(Moving average,MA)的参数辨识问题转换成一个长自回归模型(Long autoregressive,LAR)的参数辨识问题,并利用MA与等价LAR的参数对应关系直接得到MA参数,最后利用辨识出的MA参数计算出噪声方差.与扩展最小二乘法的数值仿真比较验证了这种两阶段辨识方法的有效性.展开更多
为探究车-桥耦合系统可靠性的效率和精度,建立列车-桥梁的耦合振动模型,并采用自回归方法模拟轨道不平顺.回顾ARMAX(auto-regressive moving average exogenous)模型的基本原理,提出了基于ARMAX代理模型的车-桥耦合系统可靠性分析框架;...为探究车-桥耦合系统可靠性的效率和精度,建立列车-桥梁的耦合振动模型,并采用自回归方法模拟轨道不平顺.回顾ARMAX(auto-regressive moving average exogenous)模型的基本原理,提出了基于ARMAX代理模型的车-桥耦合系统可靠性分析框架;利用代理模型获得列车响应预测值,并与直接蒙特卡罗模拟(monte carlo simulation,MCS)法结果进行对比,探讨了代理模型在分析行车安全时的计算精度和可靠性分析效率.结果表明:代理模型预测列车竖向和横向加速度响应的效率显著高于MCS法,约为3个数量级;预测竖向、横向车体加速度的精度分别为98.66%、86.55%,求解精度较好,可显著提高车-桥耦合系统可靠性分析的效率.展开更多
基于系统辨识理论,提出一种新的预测冰蓄冷中央空调平均负荷的外源自回归滑动平均(ARMAX)模型辨识方法.首先根据空调负荷历史数据构建次日平均负荷的ARMAX模型;然后基于不同的室外最高温度建立自适应ARMAX温度区间模型,该模型由几组参...基于系统辨识理论,提出一种新的预测冰蓄冷中央空调平均负荷的外源自回归滑动平均(ARMAX)模型辨识方法.首先根据空调负荷历史数据构建次日平均负荷的ARMAX模型;然后基于不同的室外最高温度建立自适应ARMAX温度区间模型,该模型由几组参数时变的子模型组成,子模型参数由在线回归算法辨识.测试数据表明,所提出的ARMAX温度区间模型与传统的ARMAX模型相比具有较高的预测精度,而且室外最高温度差异越大,效果越明显,可用于冰蓄冷中央空调的优化控制.
Abstract:
A novel ARMAX model identification method for average load forecasting of ice-storage central air conditioning is introduced based on system identification theory. Firstly an ARMAX model for the next day average load is obtained according to the historical data,then an adaptive ARMAX model is proposed based on different outdoor maximum temperature, the temperature interval based ARMAX model is composed of several time-varyiag sub-models whose parameters are identified using an on-line regression algorithm. As a result, the proposed model has good quality in terms of prediction precision in comparison with traditional ARMAX model, besides, the more outdoor maximum temperature difference, the better prediction precision, it can be applied to the optimal control of ice-storage central air conditioning.展开更多
To evaluate the software behavior of the electronic control unit (ECU) of automotive electrical parking brake (EPB), a software- in-the-loop (SiL) simulation system is built. The EPB is simulated by ARX (auto-r...To evaluate the software behavior of the electronic control unit (ECU) of automotive electrical parking brake (EPB), a software- in-the-loop (SiL) simulation system is built. The EPB is simulated by ARX (auto-regressive with auxiliary input) model, ARMAX (auto-regressive moving average with auxiliary input) model, and NNARMAX (neural network ARMAX) model. By system identification, the ARX(3,4,2), ARX(4,4,2), ARMAX(3,3,1,1), and ARMAX(4,4,3,2) models are derived. Validation results show that the four-order ARMAX model and the NNARMAX model better simulate the actuator of the EPB.展开更多
针对高比例非同步电源接入下电网等效惯量水平感知难题,提出一种基于量测数据的电网等效惯量在线估计方法。首先,利用发电机有功功率变化及节点频率数据,采用带外部输入的自回归滑动平均(auto regression and moving average model with...针对高比例非同步电源接入下电网等效惯量水平感知难题,提出一种基于量测数据的电网等效惯量在线估计方法。首先,利用发电机有功功率变化及节点频率数据,采用带外部输入的自回归滑动平均(auto regression and moving average model with exogenous input,ARMAX)模型对各区域/整个电网有功-频率动态变化进行建模。进而,基于增广递推最小二乘(recursive extended least squares,RELS)算法实现自回归滑动平均模型中未知参数的求解,辨识得到系统或区域惯性常数的估算值。此外,考虑区域间交流联络线提供的惯量支撑,对出现不平衡功率扰动后的区域惯量通过联络线耦合现象进行估计和分析。最后,基于某省级电网实际数据进行仿真测试,验证了所提方法的正确性和有效性,并对互联区域联络线提供的惯量支撑进行了分析。展开更多
文摘为了解决传统农机导航系统中前轮转角测量传感器不易安装、维护困难以及转角估计不准确等问题,本文提出了一种基于受控自回归滑动平均模型和卡尔曼滤波器的组合模型(Auto-regressive moving average with exogenous input-Kalman filter,ARMAX-KF)与速度补偿的拖拉机无前轮传感器转角估计方法。首先,利用Hammerstein非线性系统对拖拉机的转向系统建模,并采用递归最小二乘法(Recursive least squares method,RLS)将其辨识为ARMAX模型;其次,对后轮轴中心接地点速度进行杆臂误差补偿;最后,提出了ARMAX-KF方法,利用卡尔曼滤波器的校正特性,以拖拉机的运动学转角作为观测值,修正ARMAX模型预测的转角速度积分值,从而估计拖拉机的前轮转角。在速度杆臂补偿测量方法试验验证中,补偿后运动学转角平均绝对误差为1.110°,标准差为1.727°,相比补偿前分别减少61.13%和31.55%;在动态转角试验中,ARMAX模型预测的转角速度标准差为2.439(°)/s,相比采用固定传动比方法误差减少56.58%;采用基于ARMAX-KF的前轮转角估计绝对平均误差为0.649°,标准差为0.371°,相比采用固定传动比和卡尔曼滤波器的方法分别减少56.9%和78.82%;在直线导航跟踪试验中,采用基于ARMAX-KF的前轮转角估计标准差为0.649°,本文提出的方法提高了转角估计精度和农机导航作业质量。
基金This project is supported by the National Natural Science Foundation of Chinathe TWAS RG MP898-117
文摘This paper gives a definition of identifiability for multidimensional linear input-output systems and presents a necessary and sufficient condition for its satisfaction.For a class of identifiable systems it is also shown that the unknown coeffcients of the system can consistently be estimated by a recursive algorithm.
文摘New method for computing the predicting function of the ARMAX model is proposed. The proposed method constructs a set of schemes for recursively computing the parameters in predicting function of the ARMAX model. In contrast to the existing method, that only gives results for the special case of the ARX model, the method presented is suitable not only for an SISO system, but also for an MIMO system. For the SISO system, the method presented here is even more convenient than the exisiting ones.
文摘伴随着新能源产业的飞速发展,锂离子动力电池作为一种高效的储能方式,已成为电动汽车的重要组成部分。在电池管理系统的功能中,电池的高精度建模至关重要。在实际应用中,电池不是一个线性系统,其输入和输出由于外部扰动等原因表现出非线性特征,从而直接影响参数识别效果,进而影响模型精度。鉴于此,本文对锂离子动力电池进行了Hammerstein-ARMAX(Autoregressive MovingAverage with Extra Input)模型构建,并对模型参数的估计方法进行研究,旨在提高模型的准确性。实验结果表明了该方法的有效性。
文摘针对带有外生变量的自回归移动平均模型(Autoregressive moving average with exogenous variable,ARMAX)的参数辨识问题提出一种两阶段辨识方法.首先通过偏差消除最小二乘方法辨识带有外生变量的自回归部分(Autoregressive part with exogenous variable,ARX),然后采用Durbin方法将移动平均部分(Moving average,MA)的参数辨识问题转换成一个长自回归模型(Long autoregressive,LAR)的参数辨识问题,并利用MA与等价LAR的参数对应关系直接得到MA参数,最后利用辨识出的MA参数计算出噪声方差.与扩展最小二乘法的数值仿真比较验证了这种两阶段辨识方法的有效性.
文摘为探究车-桥耦合系统可靠性的效率和精度,建立列车-桥梁的耦合振动模型,并采用自回归方法模拟轨道不平顺.回顾ARMAX(auto-regressive moving average exogenous)模型的基本原理,提出了基于ARMAX代理模型的车-桥耦合系统可靠性分析框架;利用代理模型获得列车响应预测值,并与直接蒙特卡罗模拟(monte carlo simulation,MCS)法结果进行对比,探讨了代理模型在分析行车安全时的计算精度和可靠性分析效率.结果表明:代理模型预测列车竖向和横向加速度响应的效率显著高于MCS法,约为3个数量级;预测竖向、横向车体加速度的精度分别为98.66%、86.55%,求解精度较好,可显著提高车-桥耦合系统可靠性分析的效率.
文摘基于系统辨识理论,提出一种新的预测冰蓄冷中央空调平均负荷的外源自回归滑动平均(ARMAX)模型辨识方法.首先根据空调负荷历史数据构建次日平均负荷的ARMAX模型;然后基于不同的室外最高温度建立自适应ARMAX温度区间模型,该模型由几组参数时变的子模型组成,子模型参数由在线回归算法辨识.测试数据表明,所提出的ARMAX温度区间模型与传统的ARMAX模型相比具有较高的预测精度,而且室外最高温度差异越大,效果越明显,可用于冰蓄冷中央空调的优化控制.
Abstract:
A novel ARMAX model identification method for average load forecasting of ice-storage central air conditioning is introduced based on system identification theory. Firstly an ARMAX model for the next day average load is obtained according to the historical data,then an adaptive ARMAX model is proposed based on different outdoor maximum temperature, the temperature interval based ARMAX model is composed of several time-varyiag sub-models whose parameters are identified using an on-line regression algorithm. As a result, the proposed model has good quality in terms of prediction precision in comparison with traditional ARMAX model, besides, the more outdoor maximum temperature difference, the better prediction precision, it can be applied to the optimal control of ice-storage central air conditioning.
基金Sichuan Province Key Discipline Con-struction for Automotive Engineering ( No.SZD0410 )Research Foundation of Xihua University (No.R0620301)
文摘To evaluate the software behavior of the electronic control unit (ECU) of automotive electrical parking brake (EPB), a software- in-the-loop (SiL) simulation system is built. The EPB is simulated by ARX (auto-regressive with auxiliary input) model, ARMAX (auto-regressive moving average with auxiliary input) model, and NNARMAX (neural network ARMAX) model. By system identification, the ARX(3,4,2), ARX(4,4,2), ARMAX(3,3,1,1), and ARMAX(4,4,3,2) models are derived. Validation results show that the four-order ARMAX model and the NNARMAX model better simulate the actuator of the EPB.
文摘针对高比例非同步电源接入下电网等效惯量水平感知难题,提出一种基于量测数据的电网等效惯量在线估计方法。首先,利用发电机有功功率变化及节点频率数据,采用带外部输入的自回归滑动平均(auto regression and moving average model with exogenous input,ARMAX)模型对各区域/整个电网有功-频率动态变化进行建模。进而,基于增广递推最小二乘(recursive extended least squares,RELS)算法实现自回归滑动平均模型中未知参数的求解,辨识得到系统或区域惯性常数的估算值。此外,考虑区域间交流联络线提供的惯量支撑,对出现不平衡功率扰动后的区域惯量通过联络线耦合现象进行估计和分析。最后,基于某省级电网实际数据进行仿真测试,验证了所提方法的正确性和有效性,并对互联区域联络线提供的惯量支撑进行了分析。