Field-free spin-orbit torque(SOT)switching of perpendicular magnetization is essential for future spintronic devices.This study demonstrates the field-free switching of perpendicular magnetization in an HfO_(2)/Pt/Co/...Field-free spin-orbit torque(SOT)switching of perpendicular magnetization is essential for future spintronic devices.This study demonstrates the field-free switching of perpendicular magnetization in an HfO_(2)/Pt/Co/TaO_(x) structure,which is facilitated by a wedge-shaped HfO_(2)buffer layer.The field-free switching ratio varies with HfO_(2)thickness,reaching optimal performance at 25 nm.This phenomenon is attributed to the lateral anisotropy gradient of the Co layer,which is induced by the wedge-shaped HfO_(2)buffer layer.The thickness gradient of HfO_(2)along the wedge creates a corresponding lateral anisotropy gradient in the Co layer,correlating with the switching ratio.These findings indicate that field-free SOT switching can be achieved through designing buffer layer,offering a novel approach to innovating spin-orbit device.展开更多
We report a passive mode-locked fiber laser that can realize single-wavelength tuning and multi-wavelength spacing tuning simultaneously.The tuning range is from 1528 nm–1560 nm,and up to three bands of soliton state...We report a passive mode-locked fiber laser that can realize single-wavelength tuning and multi-wavelength spacing tuning simultaneously.The tuning range is from 1528 nm–1560 nm,and up to three bands of soliton states can be output at the same time.These results are confirmed by a nonlinear Schrodinger equation model based on the split-step Fourier method.In addition,we reveal a way to transform the multi-wavelength soliton state into the Q-switched mode-locked state,which is period doubling.These results will promote the development of optical communication,optical sensing and multi-signal pulse emission.展开更多
The high-speed on/off valve(HSV)serves as the fundamental component responsible for generating discrete fluids within digital hydraulic systems.As the switching frequency of the HSV increases,the properties of the gen...The high-speed on/off valve(HSV)serves as the fundamental component responsible for generating discrete fluids within digital hydraulic systems.As the switching frequency of the HSV increases,the properties of the generated discrete fluid approach those of continuous fluids.Therefore,a higher frequency response characteristic of HSV is the key to ensure the control accuracy of digital hydraulic systems.However,the current research mainly focuses on its dynamic performance,but neglect its FRC.This paper presents a theoretical analysis demonstrating that the FRC of the HSV can be enhanced by minimizing its switching time.The maximum switching frequency(MSF)is mainly determined by opening dynamic performance when HSV operates with low switching duty ratio(SDR),whereas the closing dynamic performance limits the MSF when HSV operates with high SDR.Building upon these findings,the pre-excitation control algorithm(PECA)is proposed to reduce the switching time of the HSV,and consequently enhance its FRC.Experimental results demonstrate that PECA shortens the opening delay time of HSV by 1.12 ms,the closing delay time by 2.54 ms,and the closing moving time by 0.47 ms in comparison to the existing advanced control algorithms.As a result,a larger MSF of 417 Hz and a wider controllable SDR range from 20%to 70%were achieved at a switching frequency of 250 Hz.Thus,the proposed PFCA in this paper has been verified as an effective and promising approach for enhancing the control performance of digital hydraulic systems.展开更多
For electric vehicles (EVs),it is necessary to improve endurance mileage by improving the efficiency.There exists a trend towards increasing the system voltage and switching frequency,contributing to improve charging ...For electric vehicles (EVs),it is necessary to improve endurance mileage by improving the efficiency.There exists a trend towards increasing the system voltage and switching frequency,contributing to improve charging speed and power density.However,this trend poses significant challenges for high-voltage and high-frequency motor controllers,which are plagued by increased switching losses and pronounced switching oscillations as consequences of hard switching.The deployment of soft switching technology presents a viable solution to mitigate these issues.This paper reviews the applications of soft switching technologies for three-phase inverters and classifies them based on distinct characteristics.For each type of inverter,the advantages and disadvantages are evaluated.Then,the paper introduces the research progress and control methods of soft switching inverters (SSIs).Moreover,it presents a comparative analysis among the conventional hard switching inverters (HSIs),an active clamping resonant DC link inverter (ACRDCLI) and an auxiliary resonant commuted pole inverter (ARCPI).Finally,the problems and prospects of soft switching technology applied to motor controllers for EVs are put forward.展开更多
Switched-capacitor(SC)DC-DC converter[1]is an impor-tant alternative to inductive DC-DC converter,in terms of removing the bulky power inductor.Hence,it is widely used in low-profile,low-power applications,such as the...Switched-capacitor(SC)DC-DC converter[1]is an impor-tant alternative to inductive DC-DC converter,in terms of removing the bulky power inductor.Hence,it is widely used in low-profile,low-power applications,such as the internet of things(IoT)sensor nodes and energy harvesting[2].Mean-while,considering that capacitor has a much higher energy density than inductor,high-power applications.展开更多
We report a high-average-power acousto-optic(AO)Q-switched intracavity frequency-doubled red laser based on a high-efficiency light-emitting-diode(LED)pumped two-rod Nd,Ce:YAG laser module.Under quasi-continuous wave ...We report a high-average-power acousto-optic(AO)Q-switched intracavity frequency-doubled red laser based on a high-efficiency light-emitting-diode(LED)pumped two-rod Nd,Ce:YAG laser module.Under quasi-continuous wave operation conditions,a maximum output power of 1319.08 nm wavelength was achieved at 11.26 W at a repetition rate of 100 Hz.展开更多
Dirac electrons possess a valley degree of freedom,which is currently under investigation as a potential information carrier.We propose an approach to generate and manipulate the valley-switching current(VSC)through A...Dirac electrons possess a valley degree of freedom,which is currently under investigation as a potential information carrier.We propose an approach to generate and manipulate the valley-switching current(VSC)through Andreev reflection using an interferometer-based superconductor hybrid junction.The interferometer comprises a ring-shaped structure formed by topological kink states in the a-T3 lattice via carefully designed electrostatic potentials.Our results demonstrate the feasibility of achieving a fully polarized VSC in this device without contamination from cotunneling electrons sharing the same valley as the incident electron.Furthermore,we show that control over the fully polarized VSC can be achieved by applying a nonlocal gate voltage or modifying the global parameter a.The former alters the dynamic phase of electrons while the latter provides an a-dependent Berry phase,both directly influencing quantum interference and thereby affecting performance in terms of generating and manipulating VSC,crucial for advancements in valleytronics.展开更多
Railway switch machine is essential for maintaining the safety and punctuality of train operations.A data-driven fault diagnosis scheme for railway switch machine using tensor machine and multi-representation monitori...Railway switch machine is essential for maintaining the safety and punctuality of train operations.A data-driven fault diagnosis scheme for railway switch machine using tensor machine and multi-representation monitoring data is developed herein.Unlike existing methods,this approach takes into account the spatial information of the time series monitoring data,aligning with the domain expertise of on-site manual monitoring.Besides,a multi-sensor fusion tensor machine is designed to improve single signal data’s limitations in insufficient information.First,one-dimensional signal data is preprocessed and transformed into two-dimensional images.Afterward,the fusion feature tensor is created by utilizing the images of the three-phase current and employing the CANDE-COMP/PARAFAC(CP)decomposition method.Then,the tensor learning-based model is built using the extracted fusion feature tensor.The developed fault diagnosis scheme is valid with the field three-phase current dataset.The experiment indicates an enhanced performance of the developed fault diagnosis scheme over the current approach,particularly in terms of recall,precision,and F1-score.展开更多
Photoconductive semiconductor switch(PCSS)can be applied in pulsed high power systems and microwave techniques.However,reducing the damage and increasing the lifetime of silicon carbide(SiC)PCSS are still faced severe...Photoconductive semiconductor switch(PCSS)can be applied in pulsed high power systems and microwave techniques.However,reducing the damage and increasing the lifetime of silicon carbide(SiC)PCSS are still faced severe challenges.In this study,PCSSs with various structures were prepared on 4-inch diameter,500μm thick high-purity semi-insulating 4H-SiC substrates and their on-state resistance and damage mechanisms were investigated.It was found that the PCSS of an Au/TiW/Ni electrode system annealed at 950℃had a minimum on-state resistance of 6.0Ωat 1 kV bias voltage with a 532 nm and 170 mJ pulsed laser by backside illumination single trigger.The backside illumination single trigger could reduce on-state resistance and alleviate the damage of PCSS compared to the frontside trigger when the diameter of the laser spot was larger than the channel length of PCSS.For the 200 s trigger test by a 10 Hz laser,the black branch-like ablation on Au/TiW/Ni PCSS was mainly caused by thermal stress owing to hot carriers.Replacing metal Ni with boron gallium co-doped zinc oxide(BGZO)thin films annealed at 400℃,black branch-like ablation was alleviated while concentric arc damage was obvious at the anode.The major causes of concentric arc are both pulsed laser diffraction and thermal effect.展开更多
Long-term permeability experiments have indicated that sorption-induced swelling can switch from internal to bulk depending on the evolutive sorption status.However,this sorption swelling switch mechanism has not been...Long-term permeability experiments have indicated that sorption-induced swelling can switch from internal to bulk depending on the evolutive sorption status.However,this sorption swelling switch mechanism has not been considered in current analytical permeability models.This study introduces a normalized sorption non-equilibrium index(SNEI)to characterize the sorption status,quantify the dynamical variations of matrix swelling accumulation and internal swelling partition,and formulate the sorption swelling switch model.The incorporation of this index into the extended total effective stress concept leads to an analytical transient coal permeability model.Model results show that the sorption swelling switch itself results in the permeability switch under stress-constrained conditions,while the confined bulk swelling suppresses the permeability recovery to the continuous reduction under displacement-constrained conditions.Model verifications show that current experimental observations correspond to the early stages of the transient process,and they could be extended to the whole process with these models.This study demonstrates the importance of the sorption swelling switch in determining permeability evolution using simple boundary conditions.It provides new insights into experimentally revealing the sorption swelling switch in the future,and underscores the requirement of a rigorous model for complex coupled processes in large-scale coal seams.展开更多
The intense research of lithium-ion batteries has been motivated by their successful applications in mobile devices and electronic vehicles.The emerging of intelligent control in kinds of devices brings new requiremen...The intense research of lithium-ion batteries has been motivated by their successful applications in mobile devices and electronic vehicles.The emerging of intelligent control in kinds of devices brings new requirements for battery systems.The high-energy lithium batteries are expected to respond or react under different environmental conditions.In this work,a tri-salt composite electrolyte is designed with a temperature switch function for intelligently temperature-controlled lithium batteries.Specifically,the halide Li_(3)YBr_(6)together with LiTFSI and LiNO_(3)works as active fillers in a low-melting-point polymer matrix(polyethyleneglycol dimethyl ether(PEGDME)and polyethylene oxide(PEO)),which is further filled into the pre-lithiated alumina fiber skeleton.Above 60°C,the composite electrolyte exists in the liquid state and fully contacts with the working electrodes on the liquid–solid interface,effectively minimizing the interfacial resistance and leading to high discharge capacity in the cell.The electrolyte is changed into a solid state below 30°C so that the ionic conductivity is significantly reduced and the interface resistance is increased dramatically on the solid–solid interface.Therefore,by simply adjusting the temperature,the cell can be turned“ON”or“OFF”intentionally.This novel function of the composite electrolyte has enlightening significance in developing intelligently temperature-controlled lithium batteries.展开更多
This paper proposes and implements a model-free open-loop iterative learning control(ILC)strategy to realize the speed control of the single-phase flux switching motor(FSM)with an asymmetrical rotor.Base on the propos...This paper proposes and implements a model-free open-loop iterative learning control(ILC)strategy to realize the speed control of the single-phase flux switching motor(FSM)with an asymmetrical rotor.Base on the proposed winding control method,the asymmetrical rotor enables the motor to generate continuous positive torque for positive rotation,and relatively small resistance torque for negative rotation.An initial iteration coefficient and variable iteration coefficient optimized scheme was proposed based on the characteristics of the hardware circuit,thereby forming the model-free strategy.A series of prototype experiments was carried out.Experimental results verify the effectiveness and practicability of the proposed ILC strategy.展开更多
Moleculardeviceswith highswitchingperformance and/or the perfect spin filtering effect have always been the pursuit with the development of molecular electronics.Hereb,yusingthe 2001.0V nonequilibrium.Green's func...Moleculardeviceswith highswitchingperformance and/or the perfect spin filtering effect have always been the pursuit with the development of molecular electronics.Hereb,yusingthe 2001.0V nonequilibrium.Green's function method in combination with the density functionaltheory,the switching performance and spin filtering properties of dimethyldihydropyrene(DHP)/cyclophanediene(CPD)photoswitchable molecule connected by carbon atomic chains(CACs)to two zigzag graphene nanoribbon electrodes have been theoretically investigated.The results show that DHP is more conductive than CPD and therefore an evident switching effect is demonstrated,and the switching ratio(RON/OFF)can reach 4.5×103.It is further revealed that the RoON/OF of DHP/CPD closely depends on the length of CACs.More specifically,the RoN/OFF values of DHP/CPD with odd-numbered CACs are larger than those with even-numbered CACs.More interestingly,a high or even perfect spin filtering effect can be obtained in these investigated DHP/CPD single-molecule devices.Our study is helpful for future design of single-molecule switches and spin filters and provides a way to optimize their performance by means of varying the length of bridging CACs.展开更多
We describe a 63-year-old male who appears to have undergone an early form of the arterial switch operation for D-transposition of the great arteries performed in the mid-1960s.We review the clinical and imaging data ...We describe a 63-year-old male who appears to have undergone an early form of the arterial switch operation for D-transposition of the great arteries performed in the mid-1960s.We review the clinical and imaging data that support our conclusion.He had a diagnostic cardiac catheterization which demonstrated severe pulmonary hypertension responsive to epoprostenol and oxygen.Our case may represent one example of the experimental surgical work done prior to Dr.Adibe Jatene’s description of thefirst successful arterial switch performed in 1975.展开更多
On state estimation problems of switched neural networks,most existing results with an event-triggered scheme(ETS)not only ignore the estimator information,but also just employ a fixed triggering threshold,and the est...On state estimation problems of switched neural networks,most existing results with an event-triggered scheme(ETS)not only ignore the estimator information,but also just employ a fixed triggering threshold,and the estimation error cannot be guaranteed to converge to zero.In addition,the state estimator of non-switched neural networks with integral and exponentially convergent terms cannot be used to improve the estimation performance of switched neural networks due to the difficulties caused by the nonsmoothness of the considered Lyapunov function at the switching instants.In this paper,we aim at overcoming such difficulties and filling in the gaps,by proposing a novel adaptive ETS(AETS)to design an event-based H_(∞)switched proportional-integral(PI)state estimator.A triggering-dependent exponential convergence term and an integral term are introduced into the switched PI state estimator.The relationship among the average dwell time,the AETS and the PI state estimator are established by the triggering-dependent exponential convergence term such that estimation error asymptotically converges to zero with H_(∞)performance level.It is shown that the convergence rate of the resultant error system can be adaptively adjusted according to triggering signals.Finally,the validity of the proposed theoretical results is verified through two illustrative examples.展开更多
The polarization switching plays a crucial role in controlling the final products in the catalytic pro-cess.The effect of polarization orientation on nitrogen reduction was investigated by anchoring transition metal a...The polarization switching plays a crucial role in controlling the final products in the catalytic pro-cess.The effect of polarization orientation on nitrogen reduction was investigated by anchoring transition metal atoms to form active centers on ferroelectric material In_(2)Se_(3).During the polariza-tion switching process,the difference in surface electrostatic potential leads to a redistribution of electronic states.This affects the interaction strength between the adsorbed small molecules and the catalyst substrate,thereby altering the reaction barrier.In addition,the surface states must be considered to prevent the adsorption of other small molecules(such as *O,*OH,and *H).Further-more,the V@↓-In_(2)Se_(3) possesses excellent catalytic properties,high electrochemical and thermody-namic stability,which facilitates the catalytic process.Machine learning also helps us further ex-plore the underlying mechanisms.The systematic investigation provides novel insights into the design and application of two-dimensional switchable ferroelectric catalysts for various chemical processes.展开更多
Broadcasting gateway equipment generally uses a method of simply switching to a spare input stream when a failure occurs in a main input stream.However,when the transmission environment is unstable,problems such as re...Broadcasting gateway equipment generally uses a method of simply switching to a spare input stream when a failure occurs in a main input stream.However,when the transmission environment is unstable,problems such as reduction in the lifespan of equipment due to frequent switching and interruption,delay,and stoppage of services may occur.Therefore,applying a machine learning(ML)method,which is possible to automatically judge and classify network-related service anomaly,and switch multi-input signals without dropping or changing signals by predicting or quickly determining the time of error occurrence for smooth stream switching when there are problems such as transmission errors,is required.In this paper,we propose an intelligent packet switching method based on the ML method of classification,which is one of the supervised learning methods,that presents the risk level of abnormal multi-stream occurring in broadcasting gateway equipment based on data.Furthermore,we subdivide the risk levels obtained from classification techniques into probabilities and then derive vectorized representative values for each attribute value of the collected input data and continuously update them.The obtained reference vector value is used for switching judgment through the cosine similarity value between input data obtained when a dangerous situation occurs.In the broadcasting gateway equipment to which the proposed method is applied,it is possible to perform more stable and smarter switching than before by solving problems of reliability and broadcasting accidents of the equipment and can maintain stable video streaming as well.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.12274108)the Natural Science Foundation of Zhejiang Province,China (Grant Nos.LY23A040008 and LY23A040008)the Basic Scientific Research Project of Wenzhou,China (Grant No.G20220025)。
文摘Field-free spin-orbit torque(SOT)switching of perpendicular magnetization is essential for future spintronic devices.This study demonstrates the field-free switching of perpendicular magnetization in an HfO_(2)/Pt/Co/TaO_(x) structure,which is facilitated by a wedge-shaped HfO_(2)buffer layer.The field-free switching ratio varies with HfO_(2)thickness,reaching optimal performance at 25 nm.This phenomenon is attributed to the lateral anisotropy gradient of the Co layer,which is induced by the wedge-shaped HfO_(2)buffer layer.The thickness gradient of HfO_(2)along the wedge creates a corresponding lateral anisotropy gradient in the Co layer,correlating with the switching ratio.These findings indicate that field-free SOT switching can be achieved through designing buffer layer,offering a novel approach to innovating spin-orbit device.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(Grant No.LR20A050001)the National Natural Science Foundation of China(Grant Nos.12261131495 and 12275240)the Scientific Research and De-veloped Fund of Zhejiang A&F University(Grant No.2021FR0009).
文摘We report a passive mode-locked fiber laser that can realize single-wavelength tuning and multi-wavelength spacing tuning simultaneously.The tuning range is from 1528 nm–1560 nm,and up to three bands of soliton states can be output at the same time.These results are confirmed by a nonlinear Schrodinger equation model based on the split-step Fourier method.In addition,we reveal a way to transform the multi-wavelength soliton state into the Q-switched mode-locked state,which is period doubling.These results will promote the development of optical communication,optical sensing and multi-signal pulse emission.
基金Supported by National Natural Science Foundation of China (Grant No.52005441)Young Elite Scientist Sponsorship Program by CAST of China (Grant No.2022-2024QNRC001)+4 种基金Zhejiang Provincial Natural Science Foundation of China (Grant No.LQ21E050017)Zhejiang Provincial“Pioneer”and“Leading Goose”R&D Program of China (Grant Nos.2022C01122,2022C01132)State Key Laboratory of Mechanical System and Vibration of China (Grant No.MSV202316)Fundamental Research Funds for the Provincial Universities of Zhejiang of China (Grant No.RF-A2023007)Research Project of ZJUT of China (Grant No.GYY-ZH-2023075)。
文摘The high-speed on/off valve(HSV)serves as the fundamental component responsible for generating discrete fluids within digital hydraulic systems.As the switching frequency of the HSV increases,the properties of the generated discrete fluid approach those of continuous fluids.Therefore,a higher frequency response characteristic of HSV is the key to ensure the control accuracy of digital hydraulic systems.However,the current research mainly focuses on its dynamic performance,but neglect its FRC.This paper presents a theoretical analysis demonstrating that the FRC of the HSV can be enhanced by minimizing its switching time.The maximum switching frequency(MSF)is mainly determined by opening dynamic performance when HSV operates with low switching duty ratio(SDR),whereas the closing dynamic performance limits the MSF when HSV operates with high SDR.Building upon these findings,the pre-excitation control algorithm(PECA)is proposed to reduce the switching time of the HSV,and consequently enhance its FRC.Experimental results demonstrate that PECA shortens the opening delay time of HSV by 1.12 ms,the closing delay time by 2.54 ms,and the closing moving time by 0.47 ms in comparison to the existing advanced control algorithms.As a result,a larger MSF of 417 Hz and a wider controllable SDR range from 20%to 70%were achieved at a switching frequency of 250 Hz.Thus,the proposed PFCA in this paper has been verified as an effective and promising approach for enhancing the control performance of digital hydraulic systems.
基金funded by Tsinghua University-Weichai Power Intelligent Manufacturing Joint Research Institute (WCDL-GH-2022-0131)。
文摘For electric vehicles (EVs),it is necessary to improve endurance mileage by improving the efficiency.There exists a trend towards increasing the system voltage and switching frequency,contributing to improve charging speed and power density.However,this trend poses significant challenges for high-voltage and high-frequency motor controllers,which are plagued by increased switching losses and pronounced switching oscillations as consequences of hard switching.The deployment of soft switching technology presents a viable solution to mitigate these issues.This paper reviews the applications of soft switching technologies for three-phase inverters and classifies them based on distinct characteristics.For each type of inverter,the advantages and disadvantages are evaluated.Then,the paper introduces the research progress and control methods of soft switching inverters (SSIs).Moreover,it presents a comparative analysis among the conventional hard switching inverters (HSIs),an active clamping resonant DC link inverter (ACRDCLI) and an auxiliary resonant commuted pole inverter (ARCPI).Finally,the problems and prospects of soft switching technology applied to motor controllers for EVs are put forward.
基金This work is supported by the Macao Science and Technology Development Fund(FDCT)under Grant 0041/2022/A1by the Research Committee of University of Macao under Grant MYRG2022-00004-IME.
文摘Switched-capacitor(SC)DC-DC converter[1]is an impor-tant alternative to inductive DC-DC converter,in terms of removing the bulky power inductor.Hence,it is widely used in low-profile,low-power applications,such as the internet of things(IoT)sensor nodes and energy harvesting[2].Mean-while,considering that capacitor has a much higher energy density than inductor,high-power applications.
基金Nanjing University of Posts and Telecommunications Foundation(Grant Nos.JUH219002 and JUH219007)Key Laboratory of Functional Crystals and Laser Technology,TIPC,CAS Foundation(Grant No.FCLT 202201)。
文摘We report a high-average-power acousto-optic(AO)Q-switched intracavity frequency-doubled red laser based on a high-efficiency light-emitting-diode(LED)pumped two-rod Nd,Ce:YAG laser module.Under quasi-continuous wave operation conditions,a maximum output power of 1319.08 nm wavelength was achieved at 11.26 W at a repetition rate of 100 Hz.
基金supported by the National Natural Science Foundation of China(Grant No.12174051).
文摘Dirac electrons possess a valley degree of freedom,which is currently under investigation as a potential information carrier.We propose an approach to generate and manipulate the valley-switching current(VSC)through Andreev reflection using an interferometer-based superconductor hybrid junction.The interferometer comprises a ring-shaped structure formed by topological kink states in the a-T3 lattice via carefully designed electrostatic potentials.Our results demonstrate the feasibility of achieving a fully polarized VSC in this device without contamination from cotunneling electrons sharing the same valley as the incident electron.Furthermore,we show that control over the fully polarized VSC can be achieved by applying a nonlocal gate voltage or modifying the global parameter a.The former alters the dynamic phase of electrons while the latter provides an a-dependent Berry phase,both directly influencing quantum interference and thereby affecting performance in terms of generating and manipulating VSC,crucial for advancements in valleytronics.
基金supported by the National Key Research and Development Program of China under Grant 2022YFB4300504-4the HKRGC Research Impact Fund under Grant R5020-18.
文摘Railway switch machine is essential for maintaining the safety and punctuality of train operations.A data-driven fault diagnosis scheme for railway switch machine using tensor machine and multi-representation monitoring data is developed herein.Unlike existing methods,this approach takes into account the spatial information of the time series monitoring data,aligning with the domain expertise of on-site manual monitoring.Besides,a multi-sensor fusion tensor machine is designed to improve single signal data’s limitations in insufficient information.First,one-dimensional signal data is preprocessed and transformed into two-dimensional images.Afterward,the fusion feature tensor is created by utilizing the images of the three-phase current and employing the CANDE-COMP/PARAFAC(CP)decomposition method.Then,the tensor learning-based model is built using the extracted fusion feature tensor.The developed fault diagnosis scheme is valid with the field three-phase current dataset.The experiment indicates an enhanced performance of the developed fault diagnosis scheme over the current approach,particularly in terms of recall,precision,and F1-score.
基金National Key R&D Program of China(2021YFA0716304)Shanghai Science and Technology Programs(22511100300,23DZ2201500)。
文摘Photoconductive semiconductor switch(PCSS)can be applied in pulsed high power systems and microwave techniques.However,reducing the damage and increasing the lifetime of silicon carbide(SiC)PCSS are still faced severe challenges.In this study,PCSSs with various structures were prepared on 4-inch diameter,500μm thick high-purity semi-insulating 4H-SiC substrates and their on-state resistance and damage mechanisms were investigated.It was found that the PCSS of an Au/TiW/Ni electrode system annealed at 950℃had a minimum on-state resistance of 6.0Ωat 1 kV bias voltage with a 532 nm and 170 mJ pulsed laser by backside illumination single trigger.The backside illumination single trigger could reduce on-state resistance and alleviate the damage of PCSS compared to the frontside trigger when the diameter of the laser spot was larger than the channel length of PCSS.For the 200 s trigger test by a 10 Hz laser,the black branch-like ablation on Au/TiW/Ni PCSS was mainly caused by thermal stress owing to hot carriers.Replacing metal Ni with boron gallium co-doped zinc oxide(BGZO)thin films annealed at 400℃,black branch-like ablation was alleviated while concentric arc damage was obvious at the anode.The major causes of concentric arc are both pulsed laser diffraction and thermal effect.
基金supported by the Australian Research Council(Grant No.DP200101293)the National Natural Science Foundation of China(Grant No.42202286)the Zhejiang Collaborative Innovation Center for Prevention and Control of Mountain Geological Hazards(Grant No.PCMGH-2017-Z-02).
文摘Long-term permeability experiments have indicated that sorption-induced swelling can switch from internal to bulk depending on the evolutive sorption status.However,this sorption swelling switch mechanism has not been considered in current analytical permeability models.This study introduces a normalized sorption non-equilibrium index(SNEI)to characterize the sorption status,quantify the dynamical variations of matrix swelling accumulation and internal swelling partition,and formulate the sorption swelling switch model.The incorporation of this index into the extended total effective stress concept leads to an analytical transient coal permeability model.Model results show that the sorption swelling switch itself results in the permeability switch under stress-constrained conditions,while the confined bulk swelling suppresses the permeability recovery to the continuous reduction under displacement-constrained conditions.Model verifications show that current experimental observations correspond to the early stages of the transient process,and they could be extended to the whole process with these models.This study demonstrates the importance of the sorption swelling switch in determining permeability evolution using simple boundary conditions.It provides new insights into experimentally revealing the sorption swelling switch in the future,and underscores the requirement of a rigorous model for complex coupled processes in large-scale coal seams.
基金Financial support from the National Natural Science Foundation of China(22279065 and 21935006)is gratefully acknowledged.
文摘The intense research of lithium-ion batteries has been motivated by their successful applications in mobile devices and electronic vehicles.The emerging of intelligent control in kinds of devices brings new requirements for battery systems.The high-energy lithium batteries are expected to respond or react under different environmental conditions.In this work,a tri-salt composite electrolyte is designed with a temperature switch function for intelligently temperature-controlled lithium batteries.Specifically,the halide Li_(3)YBr_(6)together with LiTFSI and LiNO_(3)works as active fillers in a low-melting-point polymer matrix(polyethyleneglycol dimethyl ether(PEGDME)and polyethylene oxide(PEO)),which is further filled into the pre-lithiated alumina fiber skeleton.Above 60°C,the composite electrolyte exists in the liquid state and fully contacts with the working electrodes on the liquid–solid interface,effectively minimizing the interfacial resistance and leading to high discharge capacity in the cell.The electrolyte is changed into a solid state below 30°C so that the ionic conductivity is significantly reduced and the interface resistance is increased dramatically on the solid–solid interface.Therefore,by simply adjusting the temperature,the cell can be turned“ON”or“OFF”intentionally.This novel function of the composite electrolyte has enlightening significance in developing intelligently temperature-controlled lithium batteries.
文摘This paper proposes and implements a model-free open-loop iterative learning control(ILC)strategy to realize the speed control of the single-phase flux switching motor(FSM)with an asymmetrical rotor.Base on the proposed winding control method,the asymmetrical rotor enables the motor to generate continuous positive torque for positive rotation,and relatively small resistance torque for negative rotation.An initial iteration coefficient and variable iteration coefficient optimized scheme was proposed based on the characteristics of the hardware circuit,thereby forming the model-free strategy.A series of prototype experiments was carried out.Experimental results verify the effectiveness and practicability of the proposed ILC strategy.
基金This work is supported by the National Natural Sci-ence Foundation China(No.22173052 of and No.11974217).
文摘Moleculardeviceswith highswitchingperformance and/or the perfect spin filtering effect have always been the pursuit with the development of molecular electronics.Hereb,yusingthe 2001.0V nonequilibrium.Green's function method in combination with the density functionaltheory,the switching performance and spin filtering properties of dimethyldihydropyrene(DHP)/cyclophanediene(CPD)photoswitchable molecule connected by carbon atomic chains(CACs)to two zigzag graphene nanoribbon electrodes have been theoretically investigated.The results show that DHP is more conductive than CPD and therefore an evident switching effect is demonstrated,and the switching ratio(RON/OFF)can reach 4.5×103.It is further revealed that the RoON/OF of DHP/CPD closely depends on the length of CACs.More specifically,the RoN/OFF values of DHP/CPD with odd-numbered CACs are larger than those with even-numbered CACs.More interestingly,a high or even perfect spin filtering effect can be obtained in these investigated DHP/CPD single-molecule devices.Our study is helpful for future design of single-molecule switches and spin filters and provides a way to optimize their performance by means of varying the length of bridging CACs.
文摘We describe a 63-year-old male who appears to have undergone an early form of the arterial switch operation for D-transposition of the great arteries performed in the mid-1960s.We review the clinical and imaging data that support our conclusion.He had a diagnostic cardiac catheterization which demonstrated severe pulmonary hypertension responsive to epoprostenol and oxygen.Our case may represent one example of the experimental surgical work done prior to Dr.Adibe Jatene’s description of thefirst successful arterial switch performed in 1975.
基金supported in part by the National Natural Science Foundation of China under Grants 62103352supported in part by Hebei Natural Science Foundation,China under Grant F2023203056the 8th batch of post-doctoral Innovative Talent Support Program BX20230150.
文摘On state estimation problems of switched neural networks,most existing results with an event-triggered scheme(ETS)not only ignore the estimator information,but also just employ a fixed triggering threshold,and the estimation error cannot be guaranteed to converge to zero.In addition,the state estimator of non-switched neural networks with integral and exponentially convergent terms cannot be used to improve the estimation performance of switched neural networks due to the difficulties caused by the nonsmoothness of the considered Lyapunov function at the switching instants.In this paper,we aim at overcoming such difficulties and filling in the gaps,by proposing a novel adaptive ETS(AETS)to design an event-based H_(∞)switched proportional-integral(PI)state estimator.A triggering-dependent exponential convergence term and an integral term are introduced into the switched PI state estimator.The relationship among the average dwell time,the AETS and the PI state estimator are established by the triggering-dependent exponential convergence term such that estimation error asymptotically converges to zero with H_(∞)performance level.It is shown that the convergence rate of the resultant error system can be adaptively adjusted according to triggering signals.Finally,the validity of the proposed theoretical results is verified through two illustrative examples.
文摘The polarization switching plays a crucial role in controlling the final products in the catalytic pro-cess.The effect of polarization orientation on nitrogen reduction was investigated by anchoring transition metal atoms to form active centers on ferroelectric material In_(2)Se_(3).During the polariza-tion switching process,the difference in surface electrostatic potential leads to a redistribution of electronic states.This affects the interaction strength between the adsorbed small molecules and the catalyst substrate,thereby altering the reaction barrier.In addition,the surface states must be considered to prevent the adsorption of other small molecules(such as *O,*OH,and *H).Further-more,the V@↓-In_(2)Se_(3) possesses excellent catalytic properties,high electrochemical and thermody-namic stability,which facilitates the catalytic process.Machine learning also helps us further ex-plore the underlying mechanisms.The systematic investigation provides novel insights into the design and application of two-dimensional switchable ferroelectric catalysts for various chemical processes.
基金This work was supported by a research grant from Seoul Women’s University(2023-0183).
文摘Broadcasting gateway equipment generally uses a method of simply switching to a spare input stream when a failure occurs in a main input stream.However,when the transmission environment is unstable,problems such as reduction in the lifespan of equipment due to frequent switching and interruption,delay,and stoppage of services may occur.Therefore,applying a machine learning(ML)method,which is possible to automatically judge and classify network-related service anomaly,and switch multi-input signals without dropping or changing signals by predicting or quickly determining the time of error occurrence for smooth stream switching when there are problems such as transmission errors,is required.In this paper,we propose an intelligent packet switching method based on the ML method of classification,which is one of the supervised learning methods,that presents the risk level of abnormal multi-stream occurring in broadcasting gateway equipment based on data.Furthermore,we subdivide the risk levels obtained from classification techniques into probabilities and then derive vectorized representative values for each attribute value of the collected input data and continuously update them.The obtained reference vector value is used for switching judgment through the cosine similarity value between input data obtained when a dangerous situation occurs.In the broadcasting gateway equipment to which the proposed method is applied,it is possible to perform more stable and smarter switching than before by solving problems of reliability and broadcasting accidents of the equipment and can maintain stable video streaming as well.