背景:运动作为一种可行的非药物治疗方法,有可能逆转随着年龄增长而恶化的骨骼肌衰老。自噬在骨骼肌衰老过程中的作用是不可缺少的。在骨骼肌衰老期间,参与调节自噬的Atg基因以或促进或抑制的方式调节自噬过程,以改善骨骼肌的生理形态...背景:运动作为一种可行的非药物治疗方法,有可能逆转随着年龄增长而恶化的骨骼肌衰老。自噬在骨骼肌衰老过程中的作用是不可缺少的。在骨骼肌衰老期间,参与调节自噬的Atg基因以或促进或抑制的方式调节自噬过程,以改善骨骼肌的生理形态。然而自噬在运动调节骨骼肌衰老中的具体分子机制仍令人困惑。目的:通过对该领域文献的回顾,寻找运动中自噬机制对骨骼肌衰老影响的一般规律。方法:①文献资料法:通过对CNKI及Web of Science数据库有关“Atg基因(蛋白)、自噬、运动以及骨骼肌衰老”等相关文献的检索、查阅和筛选,为全文的分析奠定理论基础。②对比分析法:通过对所得到文献进行阅读分析,比较文献之间的异同点,为论点提供合理的理论支撑;通过对文献的进一步对比分析,理清相关指标间的关系,为全文的分析明确思路。结果与结论:Atg家族介导的自噬对于延缓骨骼肌衰老是不可或缺的。参与调节自噬的Atg基因以或促进或抑制的方式调节自噬过程,以改善骨骼肌的生理形态及功能。不同的运动模式,如开始运动的年龄、时间或者强度,可能对自噬相关蛋白的表达有异质性的影响,但长期的有氧运动可以调节Atg相关蛋白,诱导骨骼肌自噬,并延缓肌肉质量的损失。展开更多
Bone morphogenetic protein 4(BMP4)can induce the formation of chicken primordial germ cells(PGCs)in vitro;however,its regulatory mechanism in poultry remains unknown.This study aimed to use RNA-seq to analyze PGCs in ...Bone morphogenetic protein 4(BMP4)can induce the formation of chicken primordial germ cells(PGCs)in vitro;however,its regulatory mechanism in poultry remains unknown.This study aimed to use RNA-seq to analyze PGCs in chicken embryos and iPGCs induced by BMP4 in vitro,clarify the internal regulatory factors of PGCs,analyze the mechanism of the formation of PGCs,and lay a theoretical foundation for the further optimization of PGCs induction systems.Embryonic stem cells(ESCs),PGCs and iPGCs induced by BMP4 in vitro were collected.The transcriptional maps of the three cell types were studied using RNA-seq.The results showed 6,142 genes differentially expressed between PGCs and iPGCs,of which 2,728 were upregulated in iPGCs and 3,414 were downregulated in iPGCs.Compared to that in ESCs,BMP4 was significantly upregulated in PGCs and iPGCs.KEGG results showed that both the TGF-βand Wnt signaling pathways were activated during the formation of PGCs in vitro and in vivo,and the activation was more significant during iPGCs induced by BMP4.The expression of Nodal,an inhibitory factor of TGF-βsignaling,was significantly decreased in PGCs and iPGCs,but was not expressed in iPGCs,which further supports our conclusion.Additionally,the Lysosome and PI3K-AKT signaling pathways were significantly enriched in PGCs and iPGCs,respectively.Further,transmission electron microscopy(TEM)results showed that the number of autolysosomes was significantly higher after the addition of BMP4,which is consistent with the KEGG results.Furthermore,the number of PGCs was significantly reduced after ATG14 was interfered in vivo and in vitro.In conclusion,this study screened out the key signaling pathways during the formation of PGCs,aiming to provide help for enriching the mechanism network regulating PGCs formation in chicken and laying a theoretical foundation for further improving the efficiency of inducing PGCs in vitro.展开更多
文摘背景:运动作为一种可行的非药物治疗方法,有可能逆转随着年龄增长而恶化的骨骼肌衰老。自噬在骨骼肌衰老过程中的作用是不可缺少的。在骨骼肌衰老期间,参与调节自噬的Atg基因以或促进或抑制的方式调节自噬过程,以改善骨骼肌的生理形态。然而自噬在运动调节骨骼肌衰老中的具体分子机制仍令人困惑。目的:通过对该领域文献的回顾,寻找运动中自噬机制对骨骼肌衰老影响的一般规律。方法:①文献资料法:通过对CNKI及Web of Science数据库有关“Atg基因(蛋白)、自噬、运动以及骨骼肌衰老”等相关文献的检索、查阅和筛选,为全文的分析奠定理论基础。②对比分析法:通过对所得到文献进行阅读分析,比较文献之间的异同点,为论点提供合理的理论支撑;通过对文献的进一步对比分析,理清相关指标间的关系,为全文的分析明确思路。结果与结论:Atg家族介导的自噬对于延缓骨骼肌衰老是不可或缺的。参与调节自噬的Atg基因以或促进或抑制的方式调节自噬过程,以改善骨骼肌的生理形态及功能。不同的运动模式,如开始运动的年龄、时间或者强度,可能对自噬相关蛋白的表达有异质性的影响,但长期的有氧运动可以调节Atg相关蛋白,诱导骨骼肌自噬,并延缓肌肉质量的损失。
基金This work was supported by the National Key R&D Program of China(2021YFD1200301)the National Natural Science Foundation of China(32172718)+1 种基金the Yangzhou University Graduate International Academic Exchange Special Fund Project,China(YZUF2022206)the"JBGS"Project of Seed Industry Revitalization in JiangsuProvince,China(JBGS(2021)029).
文摘Bone morphogenetic protein 4(BMP4)can induce the formation of chicken primordial germ cells(PGCs)in vitro;however,its regulatory mechanism in poultry remains unknown.This study aimed to use RNA-seq to analyze PGCs in chicken embryos and iPGCs induced by BMP4 in vitro,clarify the internal regulatory factors of PGCs,analyze the mechanism of the formation of PGCs,and lay a theoretical foundation for the further optimization of PGCs induction systems.Embryonic stem cells(ESCs),PGCs and iPGCs induced by BMP4 in vitro were collected.The transcriptional maps of the three cell types were studied using RNA-seq.The results showed 6,142 genes differentially expressed between PGCs and iPGCs,of which 2,728 were upregulated in iPGCs and 3,414 were downregulated in iPGCs.Compared to that in ESCs,BMP4 was significantly upregulated in PGCs and iPGCs.KEGG results showed that both the TGF-βand Wnt signaling pathways were activated during the formation of PGCs in vitro and in vivo,and the activation was more significant during iPGCs induced by BMP4.The expression of Nodal,an inhibitory factor of TGF-βsignaling,was significantly decreased in PGCs and iPGCs,but was not expressed in iPGCs,which further supports our conclusion.Additionally,the Lysosome and PI3K-AKT signaling pathways were significantly enriched in PGCs and iPGCs,respectively.Further,transmission electron microscopy(TEM)results showed that the number of autolysosomes was significantly higher after the addition of BMP4,which is consistent with the KEGG results.Furthermore,the number of PGCs was significantly reduced after ATG14 was interfered in vivo and in vitro.In conclusion,this study screened out the key signaling pathways during the formation of PGCs,aiming to provide help for enriching the mechanism network regulating PGCs formation in chicken and laying a theoretical foundation for further improving the efficiency of inducing PGCs in vitro.