The plasma membrane vesicles were purified from soybean (Glycine max L.) hypocotyls by two_phase partitioning methods. The stimulatory effects of K + on the coupling between ATP hydrolysis and proton transport by th...The plasma membrane vesicles were purified from soybean (Glycine max L.) hypocotyls by two_phase partitioning methods. The stimulatory effects of K + on the coupling between ATP hydrolysis and proton transport by the plasma membrane H +_ATPase were studied. The results showed that the proton transport activity was increased by 850% in the presence of 100 mmol/L KCl, while ATP hydrolytic activity was only increased by 28.2%. Kinetic studies showed that K m of ATP hydrolysis decreased from 1.14 to 0.7 mmol/L, while V max of ATP hydrolysis increased from 285.7 to 344.8 nmol Pi·mg -1 protein·min -1 in the presence of KCl. Experiments showed that the optimum pH was 6.5 and 6.0 in the presence and absence of KCl, respectively. Further studies revealed that K + could promote the inhibitory effects of hydroxylamines and vanadates on the ATP hydrolytic activity. The above results suggested that K + could regulate the coupling between ATP hydrolysis and proton transport of the plasma membrane H +_ATPase through modulating the structure and function of the kinase and phosphatase domains of the plasma membrane H +_ATPase.展开更多
Actin fibers are an important part of the cytoskeleton,providing vital support for the plasma membrane.This function is driven by its ATPase(ATP:adenosine triphosphate)activity,i.e.,ATP+H_(2)O→ADP+Pi.This seemingly s...Actin fibers are an important part of the cytoskeleton,providing vital support for the plasma membrane.This function is driven by its ATPase(ATP:adenosine triphosphate)activity,i.e.,ATP+H_(2)O→ADP+Pi.This seemingly simple reaction has attracted much attention because the hydrolysis of ATP provides energy to support life processes.However,the reaction mechanism of ATP hydrolysis in actin is not clear.In order to gain deep insights into the functions of actin,it is essential to elucidate the reaction mechanism of the actin ATP hydrolysis.In this paper,we have studied the reaction mechanism of the ATP hydrolysis in actin by the combined quantum mechanical and molecular mechanics(QM/MM)calculations.Our results show that 1)bond cleavage of the Pγ—OS of ATP and bond formation between oxygen of the lytic water and Pγatoms take place simultaneously,and this is the rate-limiting step of the hydrolysis;2)the proton on the lytic water transfers to the phosphate to form H_(2)P_(γ)O_(4)−via one bridge water.The energy barrier of the complete reaction is 17.6 kcal/mol(1 kcal=4.184 kJ),which is in high agreement with the experimental value.展开更多
Kinesin and dynein are two important classes of molecular motors which are responsible for active organelle trafficking and cell division. They can work together to carry a cargo, moving along the microtubule in a coo...Kinesin and dynein are two important classes of molecular motors which are responsible for active organelle trafficking and cell division. They can work together to carry a cargo, moving along the microtubule in a coordinated way. We use Monte Carlo method to simulate the dynamics of this coordinated movement. Based on four essential assumptions, our simulations reproduce some features of the recent in vivo experiments. The fast moving speed of the cargo is simulated and the speed distribution is presented.展开更多
Double-strand breaks(DSBs),one class of the most harmful DNA damage forms that bring elevated health risks,need to be repaired timely and effectively.However,an increasing number of environmental pollutants have been ...Double-strand breaks(DSBs),one class of the most harmful DNA damage forms that bring elevated health risks,need to be repaired timely and effectively.However,an increasing number of environmental pollutants have been identified to impair DSB repair from various mechanisms.Our previous work indicated that the formation of unsaturated Rec A nucleofilaments plays an essential role in homology recombination(HR) pathway which can accurately repair DSBs.In this study,by developing a benzonase cutting protection assay and combining it with traditional electrophoretic mobility shift assay(EMSA) analysis,we further investigated the assembly patterns of four Rec A mutants that display differential DSB repair ability and ATPase activity.We observed that the mutants(G204S and S69G) possessing both ATP hydrolysis and DSB repair activities form unsaturated nucleofilaments similar to that formed by the wild type Rec A,whereas the other two ATP hydrolysis-deficient mutants(K72R and E96D) that fail to mediate HR form more compacted nucleofilaments in the presence of ATP.These results establish a coupling of ATPase activity and effective DSB repair ability via the assembly status of Rec A nucleofilaments.This linkage provides a potential target for environmental factors to disturb the essential HR pathway for DSB repair by suppressing the ATPase activity and altering the assembly pattern of nucleofilaments.展开更多
文摘The plasma membrane vesicles were purified from soybean (Glycine max L.) hypocotyls by two_phase partitioning methods. The stimulatory effects of K + on the coupling between ATP hydrolysis and proton transport by the plasma membrane H +_ATPase were studied. The results showed that the proton transport activity was increased by 850% in the presence of 100 mmol/L KCl, while ATP hydrolytic activity was only increased by 28.2%. Kinetic studies showed that K m of ATP hydrolysis decreased from 1.14 to 0.7 mmol/L, while V max of ATP hydrolysis increased from 285.7 to 344.8 nmol Pi·mg -1 protein·min -1 in the presence of KCl. Experiments showed that the optimum pH was 6.5 and 6.0 in the presence and absence of KCl, respectively. Further studies revealed that K + could promote the inhibitory effects of hydroxylamines and vanadates on the ATP hydrolytic activity. The above results suggested that K + could regulate the coupling between ATP hydrolysis and proton transport of the plasma membrane H +_ATPase through modulating the structure and function of the kinase and phosphatase domains of the plasma membrane H +_ATPase.
基金supported by the National Natural Science Foundation of China(No.21907063),the Li Ka-shing Foundation,China(No.LD0101),the 2020 Li Ka-shing Foundation Cross-Disciplinary Research Grant,China(No.2020LKSFG07B)the Innovation Team Grant of Department of Education of Guangdong Provice,China(No.2021KCXTD005)the Shantou University Medical College(SUMC)Scientific Research Initiation Grant,China(No.510858063).
文摘Actin fibers are an important part of the cytoskeleton,providing vital support for the plasma membrane.This function is driven by its ATPase(ATP:adenosine triphosphate)activity,i.e.,ATP+H_(2)O→ADP+Pi.This seemingly simple reaction has attracted much attention because the hydrolysis of ATP provides energy to support life processes.However,the reaction mechanism of ATP hydrolysis in actin is not clear.In order to gain deep insights into the functions of actin,it is essential to elucidate the reaction mechanism of the actin ATP hydrolysis.In this paper,we have studied the reaction mechanism of the ATP hydrolysis in actin by the combined quantum mechanical and molecular mechanics(QM/MM)calculations.Our results show that 1)bond cleavage of the Pγ—OS of ATP and bond formation between oxygen of the lytic water and Pγatoms take place simultaneously,and this is the rate-limiting step of the hydrolysis;2)the proton on the lytic water transfers to the phosphate to form H_(2)P_(γ)O_(4)−via one bridge water.The energy barrier of the complete reaction is 17.6 kcal/mol(1 kcal=4.184 kJ),which is in high agreement with the experimental value.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10334100 and 10674173.
文摘Kinesin and dynein are two important classes of molecular motors which are responsible for active organelle trafficking and cell division. They can work together to carry a cargo, moving along the microtubule in a coordinated way. We use Monte Carlo method to simulate the dynamics of this coordinated movement. Based on four essential assumptions, our simulations reproduce some features of the recent in vivo experiments. The fast moving speed of the cargo is simulated and the speed distribution is presented.
基金supported by the National Natural Science Foundation of China (Nos.21927807 and 91743201)the Ministry of Science and Technology of China (Nos.2018YFC1005003 and Y9L10301)。
文摘Double-strand breaks(DSBs),one class of the most harmful DNA damage forms that bring elevated health risks,need to be repaired timely and effectively.However,an increasing number of environmental pollutants have been identified to impair DSB repair from various mechanisms.Our previous work indicated that the formation of unsaturated Rec A nucleofilaments plays an essential role in homology recombination(HR) pathway which can accurately repair DSBs.In this study,by developing a benzonase cutting protection assay and combining it with traditional electrophoretic mobility shift assay(EMSA) analysis,we further investigated the assembly patterns of four Rec A mutants that display differential DSB repair ability and ATPase activity.We observed that the mutants(G204S and S69G) possessing both ATP hydrolysis and DSB repair activities form unsaturated nucleofilaments similar to that formed by the wild type Rec A,whereas the other two ATP hydrolysis-deficient mutants(K72R and E96D) that fail to mediate HR form more compacted nucleofilaments in the presence of ATP.These results establish a coupling of ATPase activity and effective DSB repair ability via the assembly status of Rec A nucleofilaments.This linkage provides a potential target for environmental factors to disturb the essential HR pathway for DSB repair by suppressing the ATPase activity and altering the assembly pattern of nucleofilaments.