BACKGROUND ATP-sensitive K^+(KATP)channels were originally found in cardiac myocytes by Noma in 1983.KATP channels were formed by potassium ion-passing poreforming subunits(Kir6.1,Kir6.2)and regulatory subunits SUR1,S...BACKGROUND ATP-sensitive K^+(KATP)channels were originally found in cardiac myocytes by Noma in 1983.KATP channels were formed by potassium ion-passing poreforming subunits(Kir6.1,Kir6.2)and regulatory subunits SUR1,SU2A and SUR2B.A number of cells and tissues have been revealed to contain these channels including hepatocytes,but detailed localization of these subunits in different types of liver cells was still uncertain.AIM To investigate the expression of KATP channel subunits in rat liver and their localization in different cells of the liver.METHODS Rabbit anti-rat SUR1 peptide antibody was raised and purified by antigen immunoaffinity column chromatography.Four of Sprague-Dawley rats were used for liver protein extraction for immunoblot analysis,seven of them were used for immunohistochemistry both for the ABC method and immunofluorescence staining.Four of Wistar rats were used for the isolation of hepatic stellate cells(HSCs)and Kupffer cells for both primary culture and immunocytochemistry.RESULTS Immunoblot analysis showed that the five kinds of KATP channel subunits,i.e.Kir6.1,Kir6.2,SUR1,SUR2A,and SUR2B,were detected in liver.Immunohistochemical staining showed that Kir6.1 and Kir6.2 were weakly to moderately expressed in parenchymal cells and sinusoidal lining cells,while SUR1,SUR2A,and SUR2B were mainly localized to sinusoidal lining cells,such as HSCs,Kupffer cells,and sinusoidal endothelial cells.Immunoreactivity for SUR2A and SUR2B was expressed in the hepatocyte membrane.Double immunofluorescence staining further showed that the pore-forming subunits Kir6.1 and/or Kir6.2 colocalized with GFAP in rat liver sections and primary cultured HSCs.These KATP channel subunits also colocalized with CD68 in liver sections and primary cultured Kupffer cells.The SUR subunits colocalized with GFAP in liver sections and colocalized with CD68 both in liver sections and primary cultured Kupffer cells.In addition,five KATP channel subunits colocalized with SE-1 in sinusoidal endothelial cells.CONCLUSION Observations from the present study indicated that KATP channel subunits expressed in rat liver and the diversity of KATP channel subunit composition might form different types of KATP channels.This is applicable to hepatocytes,HSCs,various types of Kupffer cells and sinusoidal endothelial cells.展开更多
BACKGROUND ATP sensitive K+(K_(ATP))channels are ubiquitously distributed in various of cells and tissues,including the liver.They play a role in the pathogenesis of myocardial and liver ischemia.AIM To evaluate the r...BACKGROUND ATP sensitive K+(K_(ATP))channels are ubiquitously distributed in various of cells and tissues,including the liver.They play a role in the pathogenesis of myocardial and liver ischemia.AIM To evaluate the radiation-induced changes in the expression of K_(ATP)channel subunits in the mouse liver to understand the potential role of K_(ATP)channels in radiation injury.METHODS Adult C57BL/6 mice were randomly exposed toγ-rays at 0 Gy(control,n=2),0.2 Gy(n=6),1 Gy(n=6),or 5 Gy(n=6).The livers were removed 3 and 24 h after radiation exposure.Hematoxylin and eosin staining was used for morphological observation;immunohistochemical staining was applied to determine the expression of K_(ATP)channel subunits in the liver tissue.RESULTS Compared with the control group,the livers exposed to 0.2 Gyγ-ray showed an initial increase in the expression of Kir6.1 at 3 h,followed by recovery at 24 h after exposure.Exposure to a high dose of 5.0 Gy resulted in decreased expression of Kir6.1 and increased expression of SUR2B at 24 h.However,the expression of Kir6.2,SUR1,or SUR2A had no remarkable changes at 3 and 24 h after exposure to any of these doses.CONCLUSION The expression levels of Kir6.1 and SUR2B in mouse liver changed differently in response to different radiation doses,suggesting a potential role for them in radiation-induced liver injury.展开更多
AIM: To investigate the role of opioid p-receptor subtype in opiate-induced constipation (OIC).METHODS: The effect of Ioperamide on intestinal transit was investigated in mice. Ileum strips were isolated from 12-w...AIM: To investigate the role of opioid p-receptor subtype in opiate-induced constipation (OIC).METHODS: The effect of Ioperamide on intestinal transit was investigated in mice. Ileum strips were isolated from 12-wk-old male BALB/c mice for identification of isometric tension. The ileum strips were precontracted with 1 μmol/L acetylcholine (ACh). Then, decrease in muscle tone (relaxation) was characterized after cumu- lative administration of 0.1-10μ~mol/L Ioperamide into the organ bath, for a concentration-dependent study. Specific blockers or antagonists were used for pretreat- ment to compare the changes in Ioperamide-induced relaxation.RESULTS: In addition to the delay in intestinal transit, Ioperamide produced a marked relaxation in isolated ileum precontracted with ACh, in a dose-dependent manner. This relaxation was abolished by cyprodime,a selective opioid p-receptor antagonist, but not modified by naloxonazine at a dose sufficient to block opioid μ-1 receptors. Also, treatment with opioid μ-1 receptor agonist failed to modify the muscle tone. Moreover, the relaxation by Ioperamide was attenuated by glibenclamide at a dose sufficient to block ATP-sensitive K^+ (KATP) channels, and by protein kinase A (PKA) inhibitor, but was enhanced by an inhibitor of phosphodiesterase for cyclic adenosine monophosphate (cAMP).CONCLUSION: Loperamide induces intestinal relaxa- tion by activation of opioid μ-2 receptors via the cAMP- PKA pathway to open KATp channels, relates to OIC.展开更多
Classically, ion channels are classified into 2 groups: chemical-sensitive (ligand-gated) and voltage-sensitive channels. Single ATP-sensitive K+ (K-ATP) channel currents were recorded in acutely dissociated rat neo-c...Classically, ion channels are classified into 2 groups: chemical-sensitive (ligand-gated) and voltage-sensitive channels. Single ATP-sensitive K+ (K-ATP) channel currents were recorded in acutely dissociated rat neo-cortical neurons using patch clamp technique. A type of K-ATP channel has been found to be gated not only by intra-cellular ATP, but also by membrane potential ( Vm) , and proved to be a novel mechanism underlying the gating of ion channels, namely bi-gating mechanism. The results also show that the K-ATP channels possess heterogeneity and di-versity. These types of K-ATP channels have been identified in 40.12% of all patches, which are different in activa-tion-threshold and voltage-sensitivity. The present experiment studied the type-3 K-ATP channel with a unitary con-ductance of about 80 pS in detail ( n = 15). Taking account of all the available data, a variety of K-ATP channels are suggested to exist in body, and one type of them is bi-gated by both chemical substances and membrane potentials. This property of the K-ATP channels may be related to their pathophysiblogical function.展开更多
Our knowledge of the physiology of ion channels has increased tremendously during the past 20 years because of the advances of the single-channel recording and molecular cloning techniques. More than 50 different iden...Our knowledge of the physiology of ion channels has increased tremendously during the past 20 years because of the advances of the single-channel recording and molecular cloning techniques. More than 50 different identified potassium channels have already been found.1,2 They are distributed ubiquitously in wide variety of cells including airway smooth muscle (ASM) cells and inflammatory cells in airway such as eosinophils, basophils, macrophages and so on.3 Several types of K+ channels have been identified in ASM cells, e.g., a large-conductance, voltgage-dependent Ca2+-activated K+ channel(BKCa), a voltage-dependent delayed-rectifier K+ channel(Kv), and an ATP-sensitve K+ channel(KATP).1 In such excitable cells,展开更多
基金Supported by the Program of the network-type joint Usage/Research Center for Radiation Disaster Medical Science of Hiroshima University,Nagasaki University,and Fukushima Medical University
文摘BACKGROUND ATP-sensitive K^+(KATP)channels were originally found in cardiac myocytes by Noma in 1983.KATP channels were formed by potassium ion-passing poreforming subunits(Kir6.1,Kir6.2)and regulatory subunits SUR1,SU2A and SUR2B.A number of cells and tissues have been revealed to contain these channels including hepatocytes,but detailed localization of these subunits in different types of liver cells was still uncertain.AIM To investigate the expression of KATP channel subunits in rat liver and their localization in different cells of the liver.METHODS Rabbit anti-rat SUR1 peptide antibody was raised and purified by antigen immunoaffinity column chromatography.Four of Sprague-Dawley rats were used for liver protein extraction for immunoblot analysis,seven of them were used for immunohistochemistry both for the ABC method and immunofluorescence staining.Four of Wistar rats were used for the isolation of hepatic stellate cells(HSCs)and Kupffer cells for both primary culture and immunocytochemistry.RESULTS Immunoblot analysis showed that the five kinds of KATP channel subunits,i.e.Kir6.1,Kir6.2,SUR1,SUR2A,and SUR2B,were detected in liver.Immunohistochemical staining showed that Kir6.1 and Kir6.2 were weakly to moderately expressed in parenchymal cells and sinusoidal lining cells,while SUR1,SUR2A,and SUR2B were mainly localized to sinusoidal lining cells,such as HSCs,Kupffer cells,and sinusoidal endothelial cells.Immunoreactivity for SUR2A and SUR2B was expressed in the hepatocyte membrane.Double immunofluorescence staining further showed that the pore-forming subunits Kir6.1 and/or Kir6.2 colocalized with GFAP in rat liver sections and primary cultured HSCs.These KATP channel subunits also colocalized with CD68 in liver sections and primary cultured Kupffer cells.The SUR subunits colocalized with GFAP in liver sections and colocalized with CD68 both in liver sections and primary cultured Kupffer cells.In addition,five KATP channel subunits colocalized with SE-1 in sinusoidal endothelial cells.CONCLUSION Observations from the present study indicated that KATP channel subunits expressed in rat liver and the diversity of KATP channel subunit composition might form different types of KATP channels.This is applicable to hepatocytes,HSCs,various types of Kupffer cells and sinusoidal endothelial cells.
基金Supported by the Program of the Network-type Joint Usage/Research Center for Radiation Disaster Medical Science of Hiroshima University,Nagasaki University.
文摘BACKGROUND ATP sensitive K+(K_(ATP))channels are ubiquitously distributed in various of cells and tissues,including the liver.They play a role in the pathogenesis of myocardial and liver ischemia.AIM To evaluate the radiation-induced changes in the expression of K_(ATP)channel subunits in the mouse liver to understand the potential role of K_(ATP)channels in radiation injury.METHODS Adult C57BL/6 mice were randomly exposed toγ-rays at 0 Gy(control,n=2),0.2 Gy(n=6),1 Gy(n=6),or 5 Gy(n=6).The livers were removed 3 and 24 h after radiation exposure.Hematoxylin and eosin staining was used for morphological observation;immunohistochemical staining was applied to determine the expression of K_(ATP)channel subunits in the liver tissue.RESULTS Compared with the control group,the livers exposed to 0.2 Gyγ-ray showed an initial increase in the expression of Kir6.1 at 3 h,followed by recovery at 24 h after exposure.Exposure to a high dose of 5.0 Gy resulted in decreased expression of Kir6.1 and increased expression of SUR2B at 24 h.However,the expression of Kir6.2,SUR1,or SUR2A had no remarkable changes at 3 and 24 h after exposure to any of these doses.CONCLUSION The expression levels of Kir6.1 and SUR2B in mouse liver changed differently in response to different radiation doses,suggesting a potential role for them in radiation-induced liver injury.
基金Supported by A grant from E-Da Hospital (in part)
文摘AIM: To investigate the role of opioid p-receptor subtype in opiate-induced constipation (OIC).METHODS: The effect of Ioperamide on intestinal transit was investigated in mice. Ileum strips were isolated from 12-wk-old male BALB/c mice for identification of isometric tension. The ileum strips were precontracted with 1 μmol/L acetylcholine (ACh). Then, decrease in muscle tone (relaxation) was characterized after cumu- lative administration of 0.1-10μ~mol/L Ioperamide into the organ bath, for a concentration-dependent study. Specific blockers or antagonists were used for pretreat- ment to compare the changes in Ioperamide-induced relaxation.RESULTS: In addition to the delay in intestinal transit, Ioperamide produced a marked relaxation in isolated ileum precontracted with ACh, in a dose-dependent manner. This relaxation was abolished by cyprodime,a selective opioid p-receptor antagonist, but not modified by naloxonazine at a dose sufficient to block opioid μ-1 receptors. Also, treatment with opioid μ-1 receptor agonist failed to modify the muscle tone. Moreover, the relaxation by Ioperamide was attenuated by glibenclamide at a dose sufficient to block ATP-sensitive K^+ (KATP) channels, and by protein kinase A (PKA) inhibitor, but was enhanced by an inhibitor of phosphodiesterase for cyclic adenosine monophosphate (cAMP).CONCLUSION: Loperamide induces intestinal relaxa- tion by activation of opioid μ-2 receptors via the cAMP- PKA pathway to open KATp channels, relates to OIC.
基金Project supported by the National Natural Science Foundation of China and Natural Science Foundation of Guangdong Province.
文摘Classically, ion channels are classified into 2 groups: chemical-sensitive (ligand-gated) and voltage-sensitive channels. Single ATP-sensitive K+ (K-ATP) channel currents were recorded in acutely dissociated rat neo-cortical neurons using patch clamp technique. A type of K-ATP channel has been found to be gated not only by intra-cellular ATP, but also by membrane potential ( Vm) , and proved to be a novel mechanism underlying the gating of ion channels, namely bi-gating mechanism. The results also show that the K-ATP channels possess heterogeneity and di-versity. These types of K-ATP channels have been identified in 40.12% of all patches, which are different in activa-tion-threshold and voltage-sensitivity. The present experiment studied the type-3 K-ATP channel with a unitary con-ductance of about 80 pS in detail ( n = 15). Taking account of all the available data, a variety of K-ATP channels are suggested to exist in body, and one type of them is bi-gated by both chemical substances and membrane potentials. This property of the K-ATP channels may be related to their pathophysiblogical function.
文摘Our knowledge of the physiology of ion channels has increased tremendously during the past 20 years because of the advances of the single-channel recording and molecular cloning techniques. More than 50 different identified potassium channels have already been found.1,2 They are distributed ubiquitously in wide variety of cells including airway smooth muscle (ASM) cells and inflammatory cells in airway such as eosinophils, basophils, macrophages and so on.3 Several types of K+ channels have been identified in ASM cells, e.g., a large-conductance, voltgage-dependent Ca2+-activated K+ channel(BKCa), a voltage-dependent delayed-rectifier K+ channel(Kv), and an ATP-sensitve K+ channel(KATP).1 In such excitable cells,