Magnesium alloy is one of the lightest metal structural materials.The weight is further reduced through the hollow structure.However,the hollow structure is easily damaged during processing.In order to maintain the ho...Magnesium alloy is one of the lightest metal structural materials.The weight is further reduced through the hollow structure.However,the hollow structure is easily damaged during processing.In order to maintain the hollow structure and to transfer the stresses during the high temperature deformation,the sand mandrel is proposed.In this paper,the hollow AZ31 magnesium alloy three-channel joint is studied by hot extrusion forming.Sand as one of solid granule medium is used to fill the hollow magnesium alloy.The extrusion temperatures are 230℃ and 300℃,respectively.The process parameters(die angle,temperature,bottom thickness,sidewall thickness,edge-to-middle ratio in bottom,bottom shape)of the hollow magnesium alloy are analyzed based on the results of experiments and the finite element method.The results are shown that the formability of the hollow magnesium alloy will be much better when the ratio of sidewall thickness to the bottom thickness is 1:1.5.Also when edge-to-middle ratio in bottom is about 1:1.5,a better forming product can be received.The best bottom shape in these experiments will be convex based on the forming results.The grain will be refined obviously after the extrusion.Also the microstructures will be shown as streamlines.And these lines will be well agreement with the mold in the corner.展开更多
Cold Metal Transfer-Based Wire Arc Directed Energy Deposition(CMT-WA-DED)presents a promising avenue for the rapid fabrication of components crucial to automotive,shipbuilding,and aerospace industries.However,the susc...Cold Metal Transfer-Based Wire Arc Directed Energy Deposition(CMT-WA-DED)presents a promising avenue for the rapid fabrication of components crucial to automotive,shipbuilding,and aerospace industries.However,the susceptibility to fatigue of CMT-WA-DED-produced AZ31 Mg alloy components has impeded their widespread adoption for critical load-bearing applications.In this study,a comprehensive investigation into the fatigue behaviour of WA-DED-fabricated AZ31 Mg alloy has been carried out and compared to commercially available wrought AZ31 alloy.Our findings indicate that the as-deposited parts exhibit a lower fatigue life than wrought Mg alloy,primarily due to poor surface finish,tensile residual stress,porosity,and coarse grain microstructure inherent in the WA-DED process.Low Plasticity Burnishing(LPB)treatment is applied to mitigate these issues,which induce significant plastic deformation on the surface.This treatment resulted in a remarkable improvement of fatigue life by 42%,accompanied by a reduction in surface roughness,grain refinement and enhancement of compressive residual stress levels.Furthermore,during cyclic deformation,WA-DED specimens exhibited higher plasticity and dislocation density compared to both wrought and WA-DED+LPB specimens.A higher fraction of Low Angle Grain Boundaries(LAGBs)in WA-DED specimens contributed to multiple crack initiation sites and convoluted crack paths,ultimately leading to premature failure.In contrast,wrought and WA-DED+LPB specimens displayed a higher percentage of High Angle Grain Boundaries(HAGBs),which hindered dislocation movement and resulted in fewer crack initiation sites and less complex crack paths,thereby extending fatigue life.These findings underscore the effectiveness of LPB as a post-processing technique to enhance the fatigue performance of WA-DED-fabricated AZ31 Mg alloy components.Our study highlights the importance of LPB surface treatment on AZ31 Mg components produced by CMT-WA-DED to remove surface defects,enabling their widespread use in load-bearing applications.展开更多
Wrought magnesium alloy AZ80 with a thick section of 20 mm was prepared by squeeze casting (SC) and permanent steel mold casting (PSMC). The porosity measurements of the SC and PSMC depicted that SC AZ80 had a pore co...Wrought magnesium alloy AZ80 with a thick section of 20 mm was prepared by squeeze casting (SC) and permanent steel mold casting (PSMC). The porosity measurements of the SC and PSMC depicted that SC AZ80 had a pore content of 0.52%, which was 77% lower than 2.21% of PSMC AZ80 counterpart. The YS, UTS, e<sub>f</sub>, E and strengthening rate of cast AZ80 were determined by mechanical pulling. The engineering stress versus strain bended lines showed that SC AZ80 had a YS of 84.7 MPa, a UTS of 168.2 MPa, 5.1% in e<sub>f</sub>, and 25.1 GPa in modulus. But, the YS, UTS and e<sub>f</sub> of the PSMC AZ80 specimen were only 71.6 MPa, 109.0 MPa, 1.9% and 21.9 GPa. The findings of the mechanical pulling evidently depicted that the YS, UTS, e<sub>f</sub> and E of SC AZ80 were 18%, 54%, 174% and 15% higher than PSMC counterpart. The computed resilience and toughness suggested that the SC AZ80 exhibited greater resistance to tensile loads during elastic deformation and possessed higher capacity to absorb energy during plastic deformation compared to the PSMC AZ80. At the beginning of permanent change, the strengthening rate of SC AZ80 was 10,341 MPa, which was 9% greater than 9489 MPa of PSMC AZ80. The high mechanical characteristics of SC AZ80 should be primarily attributed to its low porosity level. .展开更多
Additive manufacturing(AM)of Mg alloys has become a promising strategy for producing complex structures,but the corrosion performance of AM Mg components remains unexploited.In this study,wire and arc additive manufac...Additive manufacturing(AM)of Mg alloys has become a promising strategy for producing complex structures,but the corrosion performance of AM Mg components remains unexploited.In this study,wire and arc additive manufacturing(WAAM)was employed to produce single AZ31 layer.The results revealed that the WAAM AZ31 was characterized by significant grain refinement with non-textured crystallographic orientation,similar phase composition and stabilized corrosion performance comparing to the cast AZ31.These varied corrosion behaviors were principally ascribed to the size of grain,where cast AZ31 and WAAM AZ31 were featured by micro galvanic corrosion and intergranular corrosion,respectively.展开更多
A V/Ce conversion coating was deposited in the surface of AZ31B magnesium alloy in a solution containing vanadate and cerium nitrate.The coating composition and morphology were examined.The conversion coating appears ...A V/Ce conversion coating was deposited in the surface of AZ31B magnesium alloy in a solution containing vanadate and cerium nitrate.The coating composition and morphology were examined.The conversion coating appears to consist of a thin and cracked coating with a scattering of spherical particles.The corrosion behavior of the substrate and conversion coating was studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS).Compared with AZ31B magnesium alloy,the corrosion current density of the conversion coating is decreased by two orders of magnitude.The total impedance of the V/Ce conversion coating rise to 1.6×10^(3)Ω·cm^(2)in contrast with2.2×10^(2)Ω·cm^(2)of the bare AZ31B.In addition,the electrical conductivity of the coating was assessed by conductivity meter and Mott-Schottky measurement.The results reveal a high dependence of the conductivity of the coating on the semiconductor properties of the phase compositions.展开更多
Cryogenic rolling experiments have been conducted on the AZ31 magnesium(Mg)alloy sheet with bimodal non-basal texture,which is fabricated via the newly developed equal channel angular rolling and continuous bending pr...Cryogenic rolling experiments have been conducted on the AZ31 magnesium(Mg)alloy sheet with bimodal non-basal texture,which is fabricated via the newly developed equal channel angular rolling and continuous bending process with subsequent annealing(ECAR-CB-A)process.Results demonstrate that this sheet shows no edge cracks until the accumulated thickness reduction reaches about 18.5%,which is about 105.6%larger than that of the sheet with traditional basal texture.Characterization experiments including optical microstructure(OM),X-ray diffractometer(XRD),and electron backscatter diffraction(EBSD)measurements are then performed to explore the microstructure characteristics,texture evolution and deformation mechanisms during cryogenic rolling.Experimental observations confirm the occurrence of abundant{10–12}extension twins(ETs),twin-twin interactions among{10–12}ET variants and{10–12}-{10–12}double twins(DTs).The twinning behaviors as for{10–12}ETs are responsible for the concentration of c-axes of grains towards normal direction(ND)and the formation of transverse direction(TD)-component texture at the beginning of cryogenic rolling.The twinning behaviors with respect to{10–12}-{10–12}DTs are responsible for the disappearance of TD-component texture at the later stage of cryogenic rolling.The involved deformation mechanisms can be summarized as follows:Firstly{10–12}ETs dominate the plastic deformation.Subsequently,dislocation slip,especially basal<a>slip,starts to sustain more plastic strain,while{10–12}ETs occur more frequently and enlarge continuously,resulting in the formation of twin-twin interaction among{10–12}ET variants.With the increasing rolling passes,{10–12}-{10–12}DTs incorporate in the plastic deformation and dislocation slip serves as the major one to sustain plastic strain.The activities of basal<a>slip,{10–12}ETs and{10–12}-{10–12}DTs benefit in accommodating the plastic strain in sheet thickness,which contributes to the improved rolling formability in AZ31 Mg alloy sheet with bimodal non-basal texture during cryogenic rolling.展开更多
In the present study,through vertical roll pre-rolling of AZ31 magnesium alloy hot-rolled plate at room temperature,the effect of different vertical roll pre-rolling reduction on edge crack of the plate during flat ro...In the present study,through vertical roll pre-rolling of AZ31 magnesium alloy hot-rolled plate at room temperature,the effect of different vertical roll pre-rolling reduction on edge crack of the plate during flat rolling was systematically studied.The evolution of microstructure and texture in the edge and middle of the plate after vertical roll pre-rolling,heating and rolling was analyzed by using EBSD technology.The results show that during the vertical roll pre-rolling,{10–12}primary twins and{10–12}-{10–12}secondary twins dominated the edge deformation,while{10–12}primary twins dominated the middle deformation.With the increase of vertical roll pre-rolling reduction,the twin volume fraction of the edge and the middle increased,and the difference between them decreased gradually.After heating,the twin orientation caused by vertical roll pre-rolling was still maintained,and there was a significant difference in grain size between the edge and the middle.When the reduction rate of flat rolling was 30%,cracks have already appeared in the initial plate,while the vertical roll pre-rolled samples showed extremely high rolling performance.When the reduction rate of flat rolling was 50%,the 8PR sample still had no crack initiation.In addition,after flat rolling of 50%,the initial plate showed a strong basal texture,while the maximum pole density of the 8PR plate was small,and the texture distribution was very scattered,showing the characteristics of weak orientation.展开更多
Lightweight curved profiles are widely utilised in the transportation industry considering the increasing need for improving aerodynamic efficiency,aesthetics and cutting emissions.In this paper,curved AZ31 Mg alloy p...Lightweight curved profiles are widely utilised in the transportation industry considering the increasing need for improving aerodynamic efficiency,aesthetics and cutting emissions.In this paper,curved AZ31 Mg alloy profiles were manufactured in one operation by a novel process,differential velocity sideways extrusion(DVSE),in which two opposed rams were used.Effects of extrusion temperature and velocity(strain rate) on curvature,microstructure,and mechanical properties of the formed profiles were examined.Profile curvature was found to be more readily controlled by the velocity ratio of the bottom ram v2to the top ram v1,whereas extrusion temperature(T=250,300,350℃)and extrusion velocity(v_(1)=0.1,1 mm/s) slightly affect curvature for a given velocity ratio.A homogeneous microstructure with equiaxed grains(~4.5 μm) resulted from dynamic recrystallisation(DRX),was observed after DVSE(v_(2)/v_(1)=1/2) at 300 ℃ and v_(1)=0.1 mm/s,where the initial billet had an average grain size of ~25 um.Increasing extrusion temperature leads to grain growth(~5 μm) at 350 ℃ and v_(1)=0.1 mm/s.DRX is incomplete at the relatively low temperature of 250℃(v_(1)=0.1 mm/s),and higher strain rate with v1=1mm/s(T=300℃),resulting in inhomogeneous bi-modal necklace pattern grains ranging in size around 1-25 μm for the former and 2-20μm for the latter.Grain refinement is attributed to DRX during the severe plastic deformation(SPD) arising in DVSE,and initiates at the prior boundaries of coarse grains in a necklace-like manner.Compared with the billet,micro-hardness and ultimate tensile strength of the profiles have been enhanced,which is compatible with grain refinement.Also,an obvious increase in tensile ductility was found.However,yield strength slightly decreases except for the complete DRXed case(300℃,v_(1)=0.1 mm/s),where a slightly higher value was found,indicating strengthening by grain refinement is greater than softening caused by texture modification.The initial billet had a strong basal texture wherein the {0002} basal plane is oriented parallel to the extrusion direction(’hard’ orientation),while DVSE results in the profiles having weak basal textures and the {0002} basal plane oriented ~5-10° to the extrusion direction(i.e.towards the orientation for easier slip).This significantly modified texture contributes to the softening of the profiles in the extrusion direction,in which tensile tests were performed,and the related elongation improvement.展开更多
Zinc calcium phosphate (Zn-Ca-P) coating and cerium-doped zinc calcium phosphate (Zn-Ca-Ce-P) coating were prepared on AZ31 magnesium alloy. The chemical compositions, morphologies and corrosion resistance of coat...Zinc calcium phosphate (Zn-Ca-P) coating and cerium-doped zinc calcium phosphate (Zn-Ca-Ce-P) coating were prepared on AZ31 magnesium alloy. The chemical compositions, morphologies and corrosion resistance of coatings were investigated through energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), electron probe micro-analysis (EPMA) and scanning electron microscopy (SEM) together with hydrogen volumetric and electrochemical tests. The results indicate that both coatings predominately contain crystalline hopeite (Zn3(PO4)2·4H2O), Mg3(PO4)2 and Ca3(PO4)2, and traces of non-crystalline MgF2 and CaF2. The Zn-Ca-Ce-P coating is more compact than the Zn-Ca-P coating due to the formation of CePO4, and displays better corrosion resistance than the Zn-Ca-P coating. Both coatings protect the AZ31 Mg substrate only during an initial immersion period. The micro-galvanic corrosion between the coatings and their substrates leads to an increase of hydrogen evolution rate (HER) with extending the immersion time. The addition of Ce promotes the homogenous distribution of Ca and formation of hopeite. The Zn-Ca-Ce-P coating has the potential for the primer coating on magnesium alloys.展开更多
Microstructure and tensile behaviors of AZ31 magnesium alloy prepared by friction stir processing(FSP) were investigated.The results show that microstructure of the AZ31 hot-rolled plate with an average grain size o...Microstructure and tensile behaviors of AZ31 magnesium alloy prepared by friction stir processing(FSP) were investigated.The results show that microstructure of the AZ31 hot-rolled plate with an average grain size of 92.0 μm is refined to 11.4 μm after FSP.The FSP AZ31 alloy exhibits excellent plasticity at elevated temperature,with an elongation to failure of 1050% at 723 K and a strain rate of 5×10-4 s-1.The elongation of the FSP material is 268% at 723 K and 1×10-2 s-1,indicating that high strain rate superplasticity could be achieved.On the other hand,the hot-rolled base material,which has a coarse grain structure,possesses no superplasticity under the experimental conditions.展开更多
The dynamic recrystallization (DRX) process of AZ31 magnesium alloy including microstructure and dislocation density evolution during hot compression was simulated by adopting the cellular automaton (CA) method co...The dynamic recrystallization (DRX) process of AZ31 magnesium alloy including microstructure and dislocation density evolution during hot compression was simulated by adopting the cellular automaton (CA) method coupling the Laasraoui-Jonas model (LJ model). The reliability of simulation depended on the accuracy of the hardening parameter, the recovery parameter and the strain rate sensitivity in the LJ model. The hardening parameter was calculated in terms of the LJ model and the Kocks-Mecking model (KM model), and then the recovery parameter and the strain rate sensitivity were obtained by using the equation of steady state flow stress for DRX. Good agreements between the simulations and the experimental observations were achieved.展开更多
The surface temperature of extruded AZ31B alloy plate was measured by infrared thermograph in air during tension and high-cycle fatigue tests. The mechanism of heat production was discussed and the value of critical f...The surface temperature of extruded AZ31B alloy plate was measured by infrared thermograph in air during tension and high-cycle fatigue tests. The mechanism of heat production was discussed and the value of critical fatigue damage temperature was calculated according to the P—ΔT curve. Results show that the variation trend of temperature is different between tension and fatigue tests. The temperature evolution in tension test consists of four stages: linear decrease, reverse linear increase, abrupt increase, and final drop. The initial decrease of temperature is caused by thermal elastic effect, which is corresponding to the elastic deformation in tension progress. When cyclic loading is above the fatigue limit, the temperature evolution mainly undergoes five stages: initial increase, steep reduction, steady state, abrupt increase, and final drop. The peak temperature in fatigue test is caused by strain hardening that can be used to evaluate the fatigue life of magnesium alloy. The critical temperature variation that causes the fatigue failure is 3.63 K. When ΔT≤3.63 K, the material is safe under cyclic loading. When ΔT3.63 K, the fatigue life is determined by cycle index and peak temperature.展开更多
To investigate the deformation twinning and the plastic anisotropy of the hexagonal-close-packed(HCP) single crystal, the crystal plastic constitutive model including slip and twinning deformation was established wi...To investigate the deformation twinning and the plastic anisotropy of the hexagonal-close-packed(HCP) single crystal, the crystal plastic constitutive model including slip and twinning deformation was established with finite element method based on crystal plasticity theory. The model was verified by test data. Newton-Raphson iteration method was developed with the stress components directly as the basic variables of iteration. The plastic deformation behavior of single crystal AZ31 alloy was analyzed numerically under monotonic tension and compression, respectively, in four different strain paths(i.e. along 〈2110〉, 〈 0110〉, 〈0001〉 and 〈0111〉) with this model. The stress-strain curves were obtained in the above paths. The numerical calculation results show that this crystal model is feasible to predict the activity of slip/twinning system and to describe the number of active twin variants, the types of dominant twin variants and twin intersection. Due to the polar nature of mechanical twinning in inelastic deformation of the material, the plastic behavior of the single crystal material is demonstrated to be notably anisotropic and high asymmetry.展开更多
The effects of Sr and Y with different contents on the microstructure and corrosion resistance of AZ31 alloy were investigated. The results indicate that the addition of Sr can obviously reduce the grain size of AZ31 ...The effects of Sr and Y with different contents on the microstructure and corrosion resistance of AZ31 alloy were investigated. The results indicate that the addition of Sr can obviously reduce the grain size of AZ31 alloy and transform β-Mg 17 Al 12 phase from continuous network to scattered form. Simultaneously, Al 4 Sr phase distributed along the boundaries of grains is formed in AZ31-Sr magnesium alloys. The addition of Sr is not as effective as the simultaneous addition of Sr+Y for the refinement of grains, and Al 2 Y and Al 3 Y phases are distributed both in intracrystalline and along grain boundaries. The corrosion resistance is improved slightly in AZ31 alloy with simultaneous addition of 0.5%Sr+Y. Due to its smallest corrosion current density and corrosion rate, the corrosion resistance of AZ31-0.5%Sr-1.5%Y magnesium alloy is proved the best.展开更多
The as-cast microstructure and Sr-containing phases in the AZ31 magnesium alloys with different Sr contents (0%, 0.3%, 2.5% and 5.0%, mass fraction) were investigated. The results indicate that after adding Sr to th...The as-cast microstructure and Sr-containing phases in the AZ31 magnesium alloys with different Sr contents (0%, 0.3%, 2.5% and 5.0%, mass fraction) were investigated. The results indicate that after adding Sr to the AZ31 magnesium alloy, the dendrite/grain size is decreased, and with the Sr content increasing from 0 to 5.0%, the dendrite becomes finer, the dendrite morphology becomes more passive and the distribution of alloying phases at dendrite/grain boundary is dispersed. Furthermore, the morphology of the β-Mg 17 Al 12 phase in the alloy with addition of 0.3%Sr changes from continuously irregular strip-like shape to discontinuously irregular strip-like shape and/or fine granule-like shape. At the same time, some lamella-like eutectic phases are found in the alloys with additions of 2.5% Sr and 5.0% Sr, and the lamella spacing in the alloy with addition of 5.0% Sr is finer. Adding high Sr content to the AZ31 alloy can bring the new ternary eutectic and/or divorced eutectic phase of Mg 11 Al 5 Zn 4 in the alloy, and the Mg 17 Sr 2 and Mg 2 Sr phases are formed in the alloys with additions of 2.5% Sr and 5.0% Sr.展开更多
The flow stress behavior of extruded AZ31 magnesium alloy sheet was investigated by means of compression tests at temperatures between 473 and 523 K and strain rates ranging from 0.001 to 1.0 s-1. The deformation acti...The flow stress behavior of extruded AZ31 magnesium alloy sheet was investigated by means of compression tests at temperatures between 473 and 523 K and strain rates ranging from 0.001 to 1.0 s-1. The deformation activation energy of the sheet in extrusion direction (ED) was calculated, and the relationship between the softening effect and deformation mechanism was elucidated by optical microscopy and transmission electron microscopy. The results show that when the extruded AZ31 magnesium alloy samples were compressed at moderate temperatures in ED direction, the deformation activation energy is 174.18 kJ/mol, which means that dynamic recrystallization (DRX) is the main softening effect and is controlled by cross slip of thermal active dislocation. Dislocation slip is the main deformation mechanism in moderate-temperature deformation process except twinning. The main DRX effect at moderate temperatures can be considered to be continuous dynamic recrystallization accommodated with twinning DRX.展开更多
A phosphate solution free of chromate, fluoride and nitrite was prepared and an environment-friendly film was obtained on AZ31 magnesium alloy surface via the chemical deposition method. The morphology, composition, p...A phosphate solution free of chromate, fluoride and nitrite was prepared and an environment-friendly film was obtained on AZ31 magnesium alloy surface via the chemical deposition method. The morphology, composition, phase structure and its corrosion resistance were studied. The effects of film-forming temperature and free acid on corrosion resistance, microstructure and electrochemical behavior of the film were discussed. The results indicate that the corrosion resistance of AZ31 with the phosphate film was better than blank AZ31 substrate, which was most attributed to the great inhibitive action on the anodic dissolution and cathodic hydrogen evolution of the film.展开更多
The effects of grain size on the shift of neutral layer of AZ31 magnesium alloy sheets with different grain sizes ranging from 12.1 to 34.7μm were investigated by the 90° V-bending tests at 150 °C. The resu...The effects of grain size on the shift of neutral layer of AZ31 magnesium alloy sheets with different grain sizes ranging from 12.1 to 34.7μm were investigated by the 90° V-bending tests at 150 °C. The results show that the neutral layer tends to shift to outer region of the sheets and the coefficient of neutral layer value (k-value) increases with the increasing grain size. This phenomenon is mainly owing to the enhanced asymmetry between the outer tension region and inner compression region with the increase of grain size. Twinning dominates the deformation in inner region while slips dominate the deformation in outer region.展开更多
The effects of strain rate on microstructure and formability of AZ31B magnesium alloy sheets were investigated through uniaxial tensile tests and hemispherical punch tests with strain rates of 10^-4, 10^-3, 10^-2, 10^...The effects of strain rate on microstructure and formability of AZ31B magnesium alloy sheets were investigated through uniaxial tensile tests and hemispherical punch tests with strain rates of 10^-4, 10^-3, 10^-2, 10^-1 s^-1 at 200℃. The results show that the volume fraction of dynamic recrystallization grains increases and the original grains are gradually replaced by recrystallization grains with the strain rate decreasing. A larger elongation and a smaller r-value are obtained at a lower strain rate, moreover the erichsen values become larger with the strain rate reducing, so the formability improves. This problem arises in part from the enhanced softening and the coordination of recrystallization grains during deformation.展开更多
The Al2Ca intermetallic compound was prepared by melting process in a vacuum induction furnace. And the A12Ca compound was added in as-cast AZ31 alloys for grain refinement. The effect of its additional levels on grai...The Al2Ca intermetallic compound was prepared by melting process in a vacuum induction furnace. And the A12Ca compound was added in as-cast AZ31 alloys for grain refinement. The effect of its additional levels on grain refinement of as-cast AZ31 alloy was investigated and the mechanism of the grain refinement was discussed. The results reveal that the addition of 1.1% Al2Ca (mass fraction) decreases the average grain size of as-cast AZ31 alloy from 354 to 198 μm. And the thermal stability of the grains refined by Al2Ca is superior. The grain refining mechanism is attributed to the combined effects of solute and heterogeneous nucleation from the Al2Ca.展开更多
基金National Natural Science Foundation of China No.51905068Natural Science Foundation of Liaoning Province No.2020-HYLH-24The open research fund from the State Key Laboratory of Rolling and Automation,Northeastern University No.2020RALKFKT012。
文摘Magnesium alloy is one of the lightest metal structural materials.The weight is further reduced through the hollow structure.However,the hollow structure is easily damaged during processing.In order to maintain the hollow structure and to transfer the stresses during the high temperature deformation,the sand mandrel is proposed.In this paper,the hollow AZ31 magnesium alloy three-channel joint is studied by hot extrusion forming.Sand as one of solid granule medium is used to fill the hollow magnesium alloy.The extrusion temperatures are 230℃ and 300℃,respectively.The process parameters(die angle,temperature,bottom thickness,sidewall thickness,edge-to-middle ratio in bottom,bottom shape)of the hollow magnesium alloy are analyzed based on the results of experiments and the finite element method.The results are shown that the formability of the hollow magnesium alloy will be much better when the ratio of sidewall thickness to the bottom thickness is 1:1.5.Also when edge-to-middle ratio in bottom is about 1:1.5,a better forming product can be received.The best bottom shape in these experiments will be convex based on the forming results.The grain will be refined obviously after the extrusion.Also the microstructures will be shown as streamlines.And these lines will be well agreement with the mold in the corner.
基金supported by the Department of Science and Technology Government of India,grant number SP/YO2019/1287(G)supported by Fronius India Solutions&Skill Centre,Bengaluru and CRF NITK Surathkal.
文摘Cold Metal Transfer-Based Wire Arc Directed Energy Deposition(CMT-WA-DED)presents a promising avenue for the rapid fabrication of components crucial to automotive,shipbuilding,and aerospace industries.However,the susceptibility to fatigue of CMT-WA-DED-produced AZ31 Mg alloy components has impeded their widespread adoption for critical load-bearing applications.In this study,a comprehensive investigation into the fatigue behaviour of WA-DED-fabricated AZ31 Mg alloy has been carried out and compared to commercially available wrought AZ31 alloy.Our findings indicate that the as-deposited parts exhibit a lower fatigue life than wrought Mg alloy,primarily due to poor surface finish,tensile residual stress,porosity,and coarse grain microstructure inherent in the WA-DED process.Low Plasticity Burnishing(LPB)treatment is applied to mitigate these issues,which induce significant plastic deformation on the surface.This treatment resulted in a remarkable improvement of fatigue life by 42%,accompanied by a reduction in surface roughness,grain refinement and enhancement of compressive residual stress levels.Furthermore,during cyclic deformation,WA-DED specimens exhibited higher plasticity and dislocation density compared to both wrought and WA-DED+LPB specimens.A higher fraction of Low Angle Grain Boundaries(LAGBs)in WA-DED specimens contributed to multiple crack initiation sites and convoluted crack paths,ultimately leading to premature failure.In contrast,wrought and WA-DED+LPB specimens displayed a higher percentage of High Angle Grain Boundaries(HAGBs),which hindered dislocation movement and resulted in fewer crack initiation sites and less complex crack paths,thereby extending fatigue life.These findings underscore the effectiveness of LPB as a post-processing technique to enhance the fatigue performance of WA-DED-fabricated AZ31 Mg alloy components.Our study highlights the importance of LPB surface treatment on AZ31 Mg components produced by CMT-WA-DED to remove surface defects,enabling their widespread use in load-bearing applications.
文摘Wrought magnesium alloy AZ80 with a thick section of 20 mm was prepared by squeeze casting (SC) and permanent steel mold casting (PSMC). The porosity measurements of the SC and PSMC depicted that SC AZ80 had a pore content of 0.52%, which was 77% lower than 2.21% of PSMC AZ80 counterpart. The YS, UTS, e<sub>f</sub>, E and strengthening rate of cast AZ80 were determined by mechanical pulling. The engineering stress versus strain bended lines showed that SC AZ80 had a YS of 84.7 MPa, a UTS of 168.2 MPa, 5.1% in e<sub>f</sub>, and 25.1 GPa in modulus. But, the YS, UTS and e<sub>f</sub> of the PSMC AZ80 specimen were only 71.6 MPa, 109.0 MPa, 1.9% and 21.9 GPa. The findings of the mechanical pulling evidently depicted that the YS, UTS, e<sub>f</sub> and E of SC AZ80 were 18%, 54%, 174% and 15% higher than PSMC counterpart. The computed resilience and toughness suggested that the SC AZ80 exhibited greater resistance to tensile loads during elastic deformation and possessed higher capacity to absorb energy during plastic deformation compared to the PSMC AZ80. At the beginning of permanent change, the strengthening rate of SC AZ80 was 10,341 MPa, which was 9% greater than 9489 MPa of PSMC AZ80. The high mechanical characteristics of SC AZ80 should be primarily attributed to its low porosity level. .
基金the financial support by National Key Research and Development Project(Grand No.2020YFC1107202)Guangdong Basic and Applied Basic Research Foundation(Grand No.2020A1515110754)+3 种基金MOE Key Lab of Disaster Forest and Control in Engineering,Jinan University(Grand No.20200904008)Educational Commission of Guangdong Province(Grand No.2020KTSCX012)the Fundamental Research Funds for Central Universities(Grand No.21620342)the support from National Natural Science Foundation of China,NSFC(Grand No.51775556)。
文摘Additive manufacturing(AM)of Mg alloys has become a promising strategy for producing complex structures,but the corrosion performance of AM Mg components remains unexploited.In this study,wire and arc additive manufacturing(WAAM)was employed to produce single AZ31 layer.The results revealed that the WAAM AZ31 was characterized by significant grain refinement with non-textured crystallographic orientation,similar phase composition and stabilized corrosion performance comparing to the cast AZ31.These varied corrosion behaviors were principally ascribed to the size of grain,where cast AZ31 and WAAM AZ31 were featured by micro galvanic corrosion and intergranular corrosion,respectively.
基金financially supported by the National Key Research and Development Program of China (Nos. 2016YFB0301105 and 2017YFB0702100)。
文摘A V/Ce conversion coating was deposited in the surface of AZ31B magnesium alloy in a solution containing vanadate and cerium nitrate.The coating composition and morphology were examined.The conversion coating appears to consist of a thin and cracked coating with a scattering of spherical particles.The corrosion behavior of the substrate and conversion coating was studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS).Compared with AZ31B magnesium alloy,the corrosion current density of the conversion coating is decreased by two orders of magnitude.The total impedance of the V/Ce conversion coating rise to 1.6×10^(3)Ω·cm^(2)in contrast with2.2×10^(2)Ω·cm^(2)of the bare AZ31B.In addition,the electrical conductivity of the coating was assessed by conductivity meter and Mott-Schottky measurement.The results reveal a high dependence of the conductivity of the coating on the semiconductor properties of the phase compositions.
基金supported by the National Natural Science Foundation of China(Grant Nos.51805064,51822509)the Qingnian project of science and technology research program of Chongqing Education Commission of China(Grant No.KJQN202101141).
文摘Cryogenic rolling experiments have been conducted on the AZ31 magnesium(Mg)alloy sheet with bimodal non-basal texture,which is fabricated via the newly developed equal channel angular rolling and continuous bending process with subsequent annealing(ECAR-CB-A)process.Results demonstrate that this sheet shows no edge cracks until the accumulated thickness reduction reaches about 18.5%,which is about 105.6%larger than that of the sheet with traditional basal texture.Characterization experiments including optical microstructure(OM),X-ray diffractometer(XRD),and electron backscatter diffraction(EBSD)measurements are then performed to explore the microstructure characteristics,texture evolution and deformation mechanisms during cryogenic rolling.Experimental observations confirm the occurrence of abundant{10–12}extension twins(ETs),twin-twin interactions among{10–12}ET variants and{10–12}-{10–12}double twins(DTs).The twinning behaviors as for{10–12}ETs are responsible for the concentration of c-axes of grains towards normal direction(ND)and the formation of transverse direction(TD)-component texture at the beginning of cryogenic rolling.The twinning behaviors with respect to{10–12}-{10–12}DTs are responsible for the disappearance of TD-component texture at the later stage of cryogenic rolling.The involved deformation mechanisms can be summarized as follows:Firstly{10–12}ETs dominate the plastic deformation.Subsequently,dislocation slip,especially basal<a>slip,starts to sustain more plastic strain,while{10–12}ETs occur more frequently and enlarge continuously,resulting in the formation of twin-twin interaction among{10–12}ET variants.With the increasing rolling passes,{10–12}-{10–12}DTs incorporate in the plastic deformation and dislocation slip serves as the major one to sustain plastic strain.The activities of basal<a>slip,{10–12}ETs and{10–12}-{10–12}DTs benefit in accommodating the plastic strain in sheet thickness,which contributes to the improved rolling formability in AZ31 Mg alloy sheet with bimodal non-basal texture during cryogenic rolling.
基金supported by the National Natural Science Foundation of China(52075357)the national key R&D plan project(2018YFA0707301)+2 种基金the key Research Science and Technology Innovation of Shanxi Province(201803D121026)Shanxi Province Science and Technology Major Project(20181102016)Open Research Fund of State Key Laboratory of High Performance Complex Manufacturing,Central South University(Kfkt2019–03)。
文摘In the present study,through vertical roll pre-rolling of AZ31 magnesium alloy hot-rolled plate at room temperature,the effect of different vertical roll pre-rolling reduction on edge crack of the plate during flat rolling was systematically studied.The evolution of microstructure and texture in the edge and middle of the plate after vertical roll pre-rolling,heating and rolling was analyzed by using EBSD technology.The results show that during the vertical roll pre-rolling,{10–12}primary twins and{10–12}-{10–12}secondary twins dominated the edge deformation,while{10–12}primary twins dominated the middle deformation.With the increase of vertical roll pre-rolling reduction,the twin volume fraction of the edge and the middle increased,and the difference between them decreased gradually.After heating,the twin orientation caused by vertical roll pre-rolling was still maintained,and there was a significant difference in grain size between the edge and the middle.When the reduction rate of flat rolling was 30%,cracks have already appeared in the initial plate,while the vertical roll pre-rolled samples showed extremely high rolling performance.When the reduction rate of flat rolling was 50%,the 8PR sample still had no crack initiation.In addition,after flat rolling of 50%,the initial plate showed a strong basal texture,while the maximum pole density of the 8PR plate was small,and the texture distribution was very scattered,showing the characteristics of weak orientation.
基金financial support provided by the UK EPSRC (EP/S019111/1 and EP/R001715/1)。
文摘Lightweight curved profiles are widely utilised in the transportation industry considering the increasing need for improving aerodynamic efficiency,aesthetics and cutting emissions.In this paper,curved AZ31 Mg alloy profiles were manufactured in one operation by a novel process,differential velocity sideways extrusion(DVSE),in which two opposed rams were used.Effects of extrusion temperature and velocity(strain rate) on curvature,microstructure,and mechanical properties of the formed profiles were examined.Profile curvature was found to be more readily controlled by the velocity ratio of the bottom ram v2to the top ram v1,whereas extrusion temperature(T=250,300,350℃)and extrusion velocity(v_(1)=0.1,1 mm/s) slightly affect curvature for a given velocity ratio.A homogeneous microstructure with equiaxed grains(~4.5 μm) resulted from dynamic recrystallisation(DRX),was observed after DVSE(v_(2)/v_(1)=1/2) at 300 ℃ and v_(1)=0.1 mm/s,where the initial billet had an average grain size of ~25 um.Increasing extrusion temperature leads to grain growth(~5 μm) at 350 ℃ and v_(1)=0.1 mm/s.DRX is incomplete at the relatively low temperature of 250℃(v_(1)=0.1 mm/s),and higher strain rate with v1=1mm/s(T=300℃),resulting in inhomogeneous bi-modal necklace pattern grains ranging in size around 1-25 μm for the former and 2-20μm for the latter.Grain refinement is attributed to DRX during the severe plastic deformation(SPD) arising in DVSE,and initiates at the prior boundaries of coarse grains in a necklace-like manner.Compared with the billet,micro-hardness and ultimate tensile strength of the profiles have been enhanced,which is compatible with grain refinement.Also,an obvious increase in tensile ductility was found.However,yield strength slightly decreases except for the complete DRXed case(300℃,v_(1)=0.1 mm/s),where a slightly higher value was found,indicating strengthening by grain refinement is greater than softening caused by texture modification.The initial billet had a strong basal texture wherein the {0002} basal plane is oriented parallel to the extrusion direction(’hard’ orientation),while DVSE results in the profiles having weak basal textures and the {0002} basal plane oriented ~5-10° to the extrusion direction(i.e.towards the orientation for easier slip).This significantly modified texture contributes to the softening of the profiles in the extrusion direction,in which tensile tests were performed,and the related elongation improvement.
基金Project(51571134)supported by the National Natural Science Foundation of ChinaProject(2014TDJH104)supported by the SDUST Research Fund+1 种基金the Joint Innovative Centre for Safe and Effective Mining Technology and Equipment of Coal Resources,Shandong Province,ChinaProject(cstc2012jj A50034)supported by the Natural Science Foundation of Chongqing,China
文摘Zinc calcium phosphate (Zn-Ca-P) coating and cerium-doped zinc calcium phosphate (Zn-Ca-Ce-P) coating were prepared on AZ31 magnesium alloy. The chemical compositions, morphologies and corrosion resistance of coatings were investigated through energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), electron probe micro-analysis (EPMA) and scanning electron microscopy (SEM) together with hydrogen volumetric and electrochemical tests. The results indicate that both coatings predominately contain crystalline hopeite (Zn3(PO4)2·4H2O), Mg3(PO4)2 and Ca3(PO4)2, and traces of non-crystalline MgF2 and CaF2. The Zn-Ca-Ce-P coating is more compact than the Zn-Ca-P coating due to the formation of CePO4, and displays better corrosion resistance than the Zn-Ca-P coating. Both coatings protect the AZ31 Mg substrate only during an initial immersion period. The micro-galvanic corrosion between the coatings and their substrates leads to an increase of hydrogen evolution rate (HER) with extending the immersion time. The addition of Ce promotes the homogenous distribution of Ca and formation of hopeite. The Zn-Ca-Ce-P coating has the potential for the primer coating on magnesium alloys.
基金Project (2009Z2-D811) supported by Guangzhou Science and Technology Development Program, ChinaProject (2009ZM0264) supported by the Fundamental Research Funds for the Central Universities, China
文摘Microstructure and tensile behaviors of AZ31 magnesium alloy prepared by friction stir processing(FSP) were investigated.The results show that microstructure of the AZ31 hot-rolled plate with an average grain size of 92.0 μm is refined to 11.4 μm after FSP.The FSP AZ31 alloy exhibits excellent plasticity at elevated temperature,with an elongation to failure of 1050% at 723 K and a strain rate of 5×10-4 s-1.The elongation of the FSP material is 268% at 723 K and 1×10-2 s-1,indicating that high strain rate superplasticity could be achieved.On the other hand,the hot-rolled base material,which has a coarse grain structure,possesses no superplasticity under the experimental conditions.
基金Project(51075132)supported by the National Natural Science Foundation of ChinaProject(2010DFB70180)supported by the Program of International Science&Technology CooperationProject(2011BAG03B02)supported by the National Key Technology R&D Program during the 12th Five-Year Plan Period of China
文摘The dynamic recrystallization (DRX) process of AZ31 magnesium alloy including microstructure and dislocation density evolution during hot compression was simulated by adopting the cellular automaton (CA) method coupling the Laasraoui-Jonas model (LJ model). The reliability of simulation depended on the accuracy of the hardening parameter, the recovery parameter and the strain rate sensitivity in the LJ model. The hardening parameter was calculated in terms of the LJ model and the Kocks-Mecking model (KM model), and then the recovery parameter and the strain rate sensitivity were obtained by using the equation of steady state flow stress for DRX. Good agreements between the simulations and the experimental observations were achieved.
基金Project(51175364)supported by the National Natural Science Foundation of ChinaProjec(2013011014-3)supported by the Natural Science Foundation of Shanxi Province,China
文摘The surface temperature of extruded AZ31B alloy plate was measured by infrared thermograph in air during tension and high-cycle fatigue tests. The mechanism of heat production was discussed and the value of critical fatigue damage temperature was calculated according to the P—ΔT curve. Results show that the variation trend of temperature is different between tension and fatigue tests. The temperature evolution in tension test consists of four stages: linear decrease, reverse linear increase, abrupt increase, and final drop. The initial decrease of temperature is caused by thermal elastic effect, which is corresponding to the elastic deformation in tension progress. When cyclic loading is above the fatigue limit, the temperature evolution mainly undergoes five stages: initial increase, steep reduction, steady state, abrupt increase, and final drop. The peak temperature in fatigue test is caused by strain hardening that can be used to evaluate the fatigue life of magnesium alloy. The critical temperature variation that causes the fatigue failure is 3.63 K. When ΔT≤3.63 K, the material is safe under cyclic loading. When ΔT3.63 K, the fatigue life is determined by cycle index and peak temperature.
基金Projects(11272094,11072064)supported by the National Natural Science Foundation of ChinaProject(LGZX201101)supported by the Laboratory Center of Guangxi Science and Technology,ChinaProject(1074023)supported by the Science Foundation of Guangxi University of Science&Technology,China
文摘To investigate the deformation twinning and the plastic anisotropy of the hexagonal-close-packed(HCP) single crystal, the crystal plastic constitutive model including slip and twinning deformation was established with finite element method based on crystal plasticity theory. The model was verified by test data. Newton-Raphson iteration method was developed with the stress components directly as the basic variables of iteration. The plastic deformation behavior of single crystal AZ31 alloy was analyzed numerically under monotonic tension and compression, respectively, in four different strain paths(i.e. along 〈2110〉, 〈 0110〉, 〈0001〉 and 〈0111〉) with this model. The stress-strain curves were obtained in the above paths. The numerical calculation results show that this crystal model is feasible to predict the activity of slip/twinning system and to describe the number of active twin variants, the types of dominant twin variants and twin intersection. Due to the polar nature of mechanical twinning in inelastic deformation of the material, the plastic behavior of the single crystal material is demonstrated to be notably anisotropic and high asymmetry.
基金Project(2007CB613702)supported by the National Basic Research Program of ChinaProject(2006AA4012)supported by the Research Program Foundation of CQ CSTC, ChinaProject(2008BB4323)supported by the Natural Science Foundation of CQ CSTC, China
文摘The effects of Sr and Y with different contents on the microstructure and corrosion resistance of AZ31 alloy were investigated. The results indicate that the addition of Sr can obviously reduce the grain size of AZ31 alloy and transform β-Mg 17 Al 12 phase from continuous network to scattered form. Simultaneously, Al 4 Sr phase distributed along the boundaries of grains is formed in AZ31-Sr magnesium alloys. The addition of Sr is not as effective as the simultaneous addition of Sr+Y for the refinement of grains, and Al 2 Y and Al 3 Y phases are distributed both in intracrystalline and along grain boundaries. The corrosion resistance is improved slightly in AZ31 alloy with simultaneous addition of 0.5%Sr+Y. Due to its smallest corrosion current density and corrosion rate, the corrosion resistance of AZ31-0.5%Sr-1.5%Y magnesium alloy is proved the best.
基金Project(50725413)supported by the National Natural Science Foundation of ChinaProject(2007CB613704)supported by the NationalBasic Research Program of China+1 种基金Project(2010CSTC-BJLKR)supported by Chongqing Science and Technology Commission,ChinaProject(CDJZR11130024)supported by the Fundamental Research Funds for the Central Universities,China
文摘The as-cast microstructure and Sr-containing phases in the AZ31 magnesium alloys with different Sr contents (0%, 0.3%, 2.5% and 5.0%, mass fraction) were investigated. The results indicate that after adding Sr to the AZ31 magnesium alloy, the dendrite/grain size is decreased, and with the Sr content increasing from 0 to 5.0%, the dendrite becomes finer, the dendrite morphology becomes more passive and the distribution of alloying phases at dendrite/grain boundary is dispersed. Furthermore, the morphology of the β-Mg 17 Al 12 phase in the alloy with addition of 0.3%Sr changes from continuously irregular strip-like shape to discontinuously irregular strip-like shape and/or fine granule-like shape. At the same time, some lamella-like eutectic phases are found in the alloys with additions of 2.5% Sr and 5.0% Sr, and the lamella spacing in the alloy with addition of 5.0% Sr is finer. Adding high Sr content to the AZ31 alloy can bring the new ternary eutectic and/or divorced eutectic phase of Mg 11 Al 5 Zn 4 in the alloy, and the Mg 17 Sr 2 and Mg 2 Sr phases are formed in the alloys with additions of 2.5% Sr and 5.0% Sr.
基金Project (50804015) supported by the National Natural Science Foundation of ChinaProject (GJJ11162) supported by the Youth Science Foundation of Jiangxi Educational Committee,ChinaProject (EA201001035) supported by the Doctor Startup Foundation of Nanchang Hangkong University,China
文摘The flow stress behavior of extruded AZ31 magnesium alloy sheet was investigated by means of compression tests at temperatures between 473 and 523 K and strain rates ranging from 0.001 to 1.0 s-1. The deformation activation energy of the sheet in extrusion direction (ED) was calculated, and the relationship between the softening effect and deformation mechanism was elucidated by optical microscopy and transmission electron microscopy. The results show that when the extruded AZ31 magnesium alloy samples were compressed at moderate temperatures in ED direction, the deformation activation energy is 174.18 kJ/mol, which means that dynamic recrystallization (DRX) is the main softening effect and is controlled by cross slip of thermal active dislocation. Dislocation slip is the main deformation mechanism in moderate-temperature deformation process except twinning. The main DRX effect at moderate temperatures can be considered to be continuous dynamic recrystallization accommodated with twinning DRX.
基金Projects (2011CL08, 2011CL01) supported by Open Fund of Material Corrosion and Protection Key Laboratory of Sichuan Province, ChinaProject (2011RC02) supported by Talent Introduction Funds of Sichuan University of ScienceProject (12ZA261) supported by Key Project of Education Department of Sichuan Province, China
文摘A phosphate solution free of chromate, fluoride and nitrite was prepared and an environment-friendly film was obtained on AZ31 magnesium alloy surface via the chemical deposition method. The morphology, composition, phase structure and its corrosion resistance were studied. The effects of film-forming temperature and free acid on corrosion resistance, microstructure and electrochemical behavior of the film were discussed. The results indicate that the corrosion resistance of AZ31 with the phosphate film was better than blank AZ31 substrate, which was most attributed to the great inhibitive action on the anodic dissolution and cathodic hydrogen evolution of the film.
基金Project(CSTC2012GGB50003)supported by Scientific and Technological Project of Chongqing Science and Technology Commission,ChinaProject(CDJZR13130081)supported by the Fundamental Research Funds for the Central Universities,China
文摘The effects of grain size on the shift of neutral layer of AZ31 magnesium alloy sheets with different grain sizes ranging from 12.1 to 34.7μm were investigated by the 90° V-bending tests at 150 °C. The results show that the neutral layer tends to shift to outer region of the sheets and the coefficient of neutral layer value (k-value) increases with the increasing grain size. This phenomenon is mainly owing to the enhanced asymmetry between the outer tension region and inner compression region with the increase of grain size. Twinning dominates the deformation in inner region while slips dominate the deformation in outer region.
基金Project(CSTC2010AA4035) supported by Scientific and Technological Project of Chongqing Science and Technology Commission, ChinaProject(CDJZR11130008) supported by the Fundamental Research Funds for the Central Universities,ChinaProject (2008DFR50040) supported by the Ministry of Science and Technology of China
文摘The effects of strain rate on microstructure and formability of AZ31B magnesium alloy sheets were investigated through uniaxial tensile tests and hemispherical punch tests with strain rates of 10^-4, 10^-3, 10^-2, 10^-1 s^-1 at 200℃. The results show that the volume fraction of dynamic recrystallization grains increases and the original grains are gradually replaced by recrystallization grains with the strain rate decreasing. A larger elongation and a smaller r-value are obtained at a lower strain rate, moreover the erichsen values become larger with the strain rate reducing, so the formability improves. This problem arises in part from the enhanced softening and the coordination of recrystallization grains during deformation.
基金Projects(CSTC2013jcyj C60001,CSTC2013jcyj A50020,CSTC2014jcyjjq0041)supported by the Chongqing Science and Technology Commission,ChinaProjects(51531002,51171212,51474043)supported by the National Natural Science Foundation of China+1 种基金Projects(2013DFA71070,2013CB632200)supported by the National Science and Technology Program of ChinaProject(KJZH14101)supported by the Education Commission of Chongqing Municipality,China
文摘The Al2Ca intermetallic compound was prepared by melting process in a vacuum induction furnace. And the A12Ca compound was added in as-cast AZ31 alloys for grain refinement. The effect of its additional levels on grain refinement of as-cast AZ31 alloy was investigated and the mechanism of the grain refinement was discussed. The results reveal that the addition of 1.1% Al2Ca (mass fraction) decreases the average grain size of as-cast AZ31 alloy from 354 to 198 μm. And the thermal stability of the grains refined by Al2Ca is superior. The grain refining mechanism is attributed to the combined effects of solute and heterogeneous nucleation from the Al2Ca.