Hot tearing is a serious destructive solidification defect of magnesium alloys and other casting metals.Quantitative and controllable measurements on the thermal and the mechanical behavior of an alloy during its soli...Hot tearing is a serious destructive solidification defect of magnesium alloys and other casting metals.Quantitative and controllable measurements on the thermal and the mechanical behavior of an alloy during its solidification process are crucial for the understanding of hot tearing formation.We developed a new experimental method and setup to characterize hot tearing behavior via controlled cooling and active loading to force hot hearing formation on cooling at selected fractions of solid.The experimental setup was fully instrumented so that stress,strain,strain rate,and temperature can be measured in-situ while hot tearing was developing.An AZ91D magnesium alloy,which is prone to hot tearing,was used in this study.Results indicate that when hot hearing occurred,the local temperature,critical stress,and cumulative strain were directly affected by strain rate.Depending on the applied strain rate,hot tearing of the AZ91D magnesium alloy could occur in two solidification stages:one in the dendrite solidification stage(fS∼0.81-0.82)and the other in the eutectic solidification stage(fS∼0.99).AZ91D alloy exhibited distinct mechanical behaviors in these two ranges of fraction solid.展开更多
Wire arc additive manufacturing offers advantages in producing large metal structures.The current research on GTA-based wire arc additive manufacturing(GTA-WAAM)of magnesium alloys is focused on deformed magnesium all...Wire arc additive manufacturing offers advantages in producing large metal structures.The current research on GTA-based wire arc additive manufacturing(GTA-WAAM)of magnesium alloys is focused on deformed magnesium alloys,mainly on the Mg-Al alloy system.However,there is little research on GTA-WAAM for casting magnesium alloy.This study investigates the microstructural characteristics and mechanical properties of AZ91D magnesium alloy(AZ91D-Mg)deposited by GTA-WAAM.Single-pass multilayer thin-walled components were successfully fabricated.The results show that equiaxed grains dominate the microstructure of the deposited samples.During the remelting process,the precipitated phases dissolve into the matrix,and they precipitate and grow from the matrix under the thermal effect of the subsequent thermal cycle.The mechanical properties in the vertical and horizontal directions are similar,showing higher overall mechanical properties than the casting parts.The average yield strength is 110.5 MPa,the ultimate tensile strength is 243.6 MPa,and the elongation is 11.7%.The overall hardness distribution in the deposited sample is relatively uniform,and the average microhardness is 59.6 HV_(0.2).展开更多
Ceramic oxide coatings were prepared on AZ91D magnesium alloys in alkaline silicate solution using micro-arc oxidation(MAO) technique.The corrosion behavior of MAO coating on AZ91D magnesium alloys in NaCl solutions...Ceramic oxide coatings were prepared on AZ91D magnesium alloys in alkaline silicate solution using micro-arc oxidation(MAO) technique.The corrosion behavior of MAO coating on AZ91D magnesium alloys in NaCl solutions with different concentrations(0.1%,0.5%,1.0%,3.5% and 5.0% in mass fraction) was evaluated by electrochemical measurements and immersion tests.The results showed that the corrosion rate of the MAO coated AZ91D increased with increasing chloride ion concentration.The main form of corrosion failure was localized corrosion for the MAO coated AZ91D immersed in higher concentration NaCl solutions(1.0%,3.5% and 5.0%),while it was general corrosion in dilute NaCl solutions(0.1% and 0.5%).Two different stages of the failure process of the MAO coated AZ91D could be identified:1) occurrence of the metastable pits and 2) growth of the pits.Different equivalent circuits were also proposed based on the results of electrochemical impedance spectroscopy(EIS) for the MAO coated AZ91D immersed in different concentrations of NaCl solutions for 120 h.展开更多
The microarc oxidation(MAO) coatings produced at different current frequencies on AZ91 D magnesium alloys were studied systematically. The morphologies, thickness, corrosion performances, and tribological properties...The microarc oxidation(MAO) coatings produced at different current frequencies on AZ91 D magnesium alloys were studied systematically. The morphologies, thickness, corrosion performances, and tribological properties of the coatings were investigated by the scanning electron microscopy, the electrochemical measurement system, and MS-T3000 friction test rig, respectively. The results show that the structure of the coatings becomes denser, and thickness becomes thinner with the increase of the current frequency. It is also found that the corrosion resistance of the coatings produced at higher frequency is improved greatly and the difference of the corrosion current density becomes small with increasing current frequency, which is similar to that of the coating thickness. The tribological test shows that the friction coefficient decreases with increasing the current frequency and the wear resistance of the coatings is influenced by both the thickness and structures. All these results were explained by analyzing the growing process of the MAO coating.展开更多
Micro-arc oxidation (MAO) process was carried out on AZ91D alloy in alkaline borate solution using an alternative square-wave power source with different parameters. The effects of voltage, frequency and duty cycle ...Micro-arc oxidation (MAO) process was carried out on AZ91D alloy in alkaline borate solution using an alternative square-wave power source with different parameters. The effects of voltage, frequency and duty cycle on the coatings were investigated by orthogonal experiment. It is found that the thickness of coatings increases with the increase of voltage and duty cycle, but decreases with the increase of frequency. The structure and morphology of the coatings also depend on voltage, frequency and duty cycle. The coatings become more porous and crack with increasing voltage and duty cycle. The coating is thin and transparent when the voltage is lower than 120 V. The corrosion resistances of different coatings were evaluated by polarization curves and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl (mass fraction) solution. When the optimized values of voltage, frequency and duty cycle are 140 V, 2 000 Hz and 0.4, respectively, the anodic coating shows the best corrosion resistance.展开更多
The microstructural evolution of AZ91D magnesium alloy prepared by means of the cyclic upsetting-extrusion and partial remelting was investigated. The effects of remelting temperature and holding time on microstructur...The microstructural evolution of AZ91D magnesium alloy prepared by means of the cyclic upsetting-extrusion and partial remelting was investigated. The effects of remelting temperature and holding time on microstructure of semi-solid AZ91D magnesium alloy were studied. Furthermore, tensile properties of thixoextruded AZ91D magnesium alloy components were determined. The results show that the cyclic upsetting-extrusion followed by partial remelting is effective in producing semi-solid AZ91D magnesium alloy for thixofonning. During the partial remelting, with the increase of remelting temperature and holding time, the solid grain size increases and the degree of spheroidization tends to be improved. The tensile mechanical properties of thixoextruded AZ91D magnesium alloy components produced by cyclic upsetting-extrusion and partial remelting are better than those of the same alloy produced by casting.展开更多
The semi-solid slurry of AZ91 D magnesium alloy was prepared by gas bubbling process.The effect of processing parameters,including gas flow rate,cooling rate and stirring end temperature,on microstructure of AZ91 D se...The semi-solid slurry of AZ91 D magnesium alloy was prepared by gas bubbling process.The effect of processing parameters,including gas flow rate,cooling rate and stirring end temperature,on microstructure of AZ91 D semi-solid slurry was investigated.With increasing the gas flow rate from 0 to 5 L/min,the average size of primary α-Mg particles decreases from 119.1 to77.2μm and the average shape factor increases continuously from 0.1 to 0.596.The formation of non-dendritic primary α-Mg particles during gas bubbling is the result of combined effects of dendrite fragmentation and copious nucleation.With increasing the cooling rate from 3.6 to 14.6℃/min,the average particle size of primary α-Mg phase decreases from 105.0 to 68.1μm while the average shape factor peaks at 9.1℃/min.Both high and low cooling rates can induce dendritic growth of primary α-Mg particles.Changing the stirring end temperature from 590 to 595℃ has little effect on the average size and shape factor of primary α-Mg particles in AZ91 D semi-solid slurry.The insensitivity of semi-solid microstructures to the stirring end temperature is attributed to the sufficient quantity of primary particles formed in the melt.展开更多
Low temperature mechanical properties of AZ91D magnesium alloy fabricated by solid recycling process from recycled scraps were studied. Various microstructural analyses were performed using optical microscopy (OM) a...Low temperature mechanical properties of AZ91D magnesium alloy fabricated by solid recycling process from recycled scraps were studied. Various microstructural analyses were performed using optical microscopy (OM) and scanning electron microscopy (SEM). The recycled specimens consist of fine grains due to dynamic recrystallization and the interfaces of original individual scraps are not identified. Tensile tests were performed at a strain rate of 5 x 10 3 s 1 at room temperature (27 ~C), -70, -100 and 130 ~C, respectively. Ultimate tensile strength of the specimens increases slightly with decreasing the tensile temperature, and elongation to failure decreases with decreasing the tensile temperature. The tensile specimens at -130 ~C show the highest ultimate tensile strength of 360.65 MPa and the lowest elongation to failure of 5.46%. Impact tests were performed at room temperature (27 ~C), -70 and -130 ~C, respectively. Impact toughness decreases with decreasing the impact temperature. The impact specimens at -130 ~C show the lowest impact toughness of 3.06 J/cm2.展开更多
Electroless nickel plating on AZ91D substrate with a new and eco-friendly pretreatment process based on tuning an electrochemical homogeneous surface was investigated. The morphology, deposition process, chemical comp...Electroless nickel plating on AZ91D substrate with a new and eco-friendly pretreatment process based on tuning an electrochemical homogeneous surface was investigated. The morphology, deposition process, chemical composition and microstructure of Ni-P coating were studied. It is indicated that β phases are selectively removed, producing a microstructural homogeneous surface and the subsequent uniform and compact Zn immersion layer. A defect-free and well adhesive Ni-P coating can be successfully obtained due to its uniform nucleation and growth based on such pretreatment. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests reveal that Ni-P coating could significantly improve the corrosion resistance of AZ91D substrate.展开更多
The investment on semi-solid die casting processes of AZ91D magnesium alloy brackets for generators in JH70-type motorbikes is introduced. The processes of low super-heat and cooling slope for the preparation of bille...The investment on semi-solid die casting processes of AZ91D magnesium alloy brackets for generators in JH70-type motorbikes is introduced. The processes of low super-heat and cooling slope for the preparation of billets with non-dendritic microstructure, the remelting of billets for thixoforming and the parameters in the process of semi-sohd thixoforming have been researched. The results show that primary billets with non-dendritical structures can be prepared by forming great amount of nuclei in melt via the process of low super heat. By optimizing the remelting process through adjusting the current of the induced equipment, semi-solid billets with a structure of spherical grains were obtained from the primary billets with non-dendritical structure. The range of 580℃ to 583℃ is the proper remelting temperatures by which the billets have an expected thixotropy and can be transferred to a die-casting machine. The optimized parameters of semi-solid forming in a die-casting machine are as follows: the area of the ingate in the die is 383.5 mm^2, the speed of the pierce of the machine 5 m/s, the shot pressure of the pierce 75 MPa, and the maintenance pressure of the pierce 350 MPa. The castings of brackets for supporting generators in JH70 type motorbikes were formed by adopting the optimized processes and parameters mentioned above.展开更多
To improve the sliding wear resistance of AZ91D magnesium alloy, Cu-based amorphous composite coatings made of CuaTTi34Zr11Nis and Cu47Ti34Zr11Ni8+20 wt pct SiC powders were fabricated on AZ91D magnesium alloy by las...To improve the sliding wear resistance of AZ91D magnesium alloy, Cu-based amorphous composite coatings made of CuaTTi34Zr11Nis and Cu47Ti34Zr11Ni8+20 wt pct SiC powders were fabricated on AZ91D magnesium alloy by laser cladding, respectively. SEM (scanning electron microscopy), EDS (energy dispersive X-ray spectroscopy), XRD (X-ray diffraction) and TEM (transmission electron microscopy) techniques were employed to study the phases of the coatings. The results show that the coatings mainly consist of amorphous phase and different intermetallic compounds. The reason of formation of amorphous phase and the function of SiC particles were explained in details.展开更多
A method for recycling AZ91D magnesium alloy scraps directly by hot extrusion was studied.Various microstructural analyses were performed using the techniques of optical microscopy,scanning electron microscopy(SEM)and...A method for recycling AZ91D magnesium alloy scraps directly by hot extrusion was studied.Various microstructural analyses were performed using the techniques of optical microscopy,scanning electron microscopy(SEM)and energy dispersive spectroscopy(EDS).Microstructural observations revealed that all the recycled specimens consisted of fine grains due to the dynamic recrystallization.The main strengthening mechanism of the recycled specimen was grain refinement strengthening and homogeneous distribution of oxide precipitates.The interfaces of individual scraps of extruded materials were not identified when the scraps were extruded with the extrusion ratio of 40-1.Oxidation layers of the scraps were broken into pieces by high compressive and shear forces under the extrusion ratio of 40-1.The ultimate tensile strength and elongation to failure increased with increasing the extrusion ratio.Recycled specimens with the extrusion ratio of 40:1 showed higher ultimate tensile strength of 342.61 MPa and higher elongation to failure of 11.32%,compared with those of the cast specimen.展开更多
To investigate the thixotropic fluidities, microstructures and mechanical properties of semi-solid AZ91D magnesium alloy during reheating, a self-made die set with channels of different sizes were used. The results sh...To investigate the thixotropic fluidities, microstructures and mechanical properties of semi-solid AZ91D magnesium alloy during reheating, a self-made die set with channels of different sizes were used. The results show that critical forming forces and maximal forming forces could be obtained and related to the holding times in the semi-solid forming process. In the holding time of 0-2700 s, with increasing the holding time, maximal forming force decreased sharply and critical forming force decreased slowly. In the whole thixotropic flowing process, the filling-in was steady and the surface fineness was good. The forming force increased when the slurry changed the flowing direction or flowed from the big-diameter chamber to the small-diameter one. The tensile strength and elongation to failure of the sample after holding time for 2700 s, compared to as-cast sample, are increased by approximately 42.7% and 180%, respectively, and the fractured surfaces presented dimple-like pattern.展开更多
A self-developed taper barrel rheomoulding(TBR)machine was introduced,and the rheo-diecasting process was implemented by combining TBR machine with the high pressure die casting(HPDC)machine.Microstructural characteri...A self-developed taper barrel rheomoulding(TBR)machine was introduced,and the rheo-diecasting process was implemented by combining TBR machine with the high pressure die casting(HPDC)machine.Microstructural characteristics of the rheo-diecasting components were investigated at different rotation speeds.Flow characteristics and microstructural evolution of the semi-solid slurry during the rheo-diecasting process were analyzed and the mechanical properties of the rheo-diecasting components were studied.The experimental results show that the process is able to obtain such components in which the primaryα-Mg particles are fine,nearly spherical and uniformly distributed in the matrix.When the rotation speed of internal taper barrel is 700 r/min,the primaryα-Mg particles get a mean diameter of about 45μm and a shape factor of about 0.81.The magnesium alloy melt has complex stirring-fixed flow characteristics when flowing in TBR machine.Compared with conventional die-casing process,the rheo-diecasting process can improve the mechanical properties of components;especially,the elongation is improved by 80%.展开更多
The magnesium alloy is prone to burn during die-casting, which limits its applications severely, so the effect of adding rare earth (RE) on the ignition-proof of AZ91D Mg alloy is studied. The results indicate that ...The magnesium alloy is prone to burn during die-casting, which limits its applications severely, so the effect of adding rare earth (RE) on the ignition-proof of AZ91D Mg alloy is studied. The results indicate that the addition of mischmetal RE elements has a remarkable influence on the ignition-proof property of the magnesium alloy. It is found that the ignition temperature of the magnesium alloy can be greatly raised by adding a proper amount of RE. When the amount is 0.1wt%, the ignition temperature reaches 877℃ which is 206℃ higher than that of AZ91D without RE and the mechanical properties of the alloy are also improved, However, the amount of RE must be properly controlled because too much RE would induce grain coarsening and reduce the mechanical properties.展开更多
As-cast and corrosive microstructures of AZ91D alloy containing various Ce contents were observed by optical microscope (OM). The phase compositions of the alloys before and after the corrosion were analyzed by X-ray ...As-cast and corrosive microstructures of AZ91D alloy containing various Ce contents were observed by optical microscope (OM). The phase compositions of the alloys before and after the corrosion were analyzed by X-ray diffraction (XRD). Meanwhile, the corrosion resistance of the alloys was tested by weight loss and potentiodynamic polarization curve methods respectively. The results show that rod-like Al4Ce phase is formed in AZ91D alloy containing certain Ce content and as-cast microstructures are refined. AZ91D-0.7%Ce alloy has good grain refinement effect. The addition of Ce can reduce the corrosion rate and corrosion current density of AZ91D alloy and those of AZ91D-0.1%Ce alloy reach the minimum, which are 0.35mg/(cm2·d) and 2.761μA/cm2 with 75% and 86% reduction, respectively. The increasing volume fraction and reticular degree of β phase can improve the corrosion resistance of the alloys.展开更多
The inhibition effect of electrochemical noise, EIS and surface analysis to evaluate N'-bis (2-pyridylmethylidene)- 1,2-diiminoethane (BPIE) Schiff base against AZ91D alloy corrosion in 0.01 mol/L HCl was investig...The inhibition effect of electrochemical noise, EIS and surface analysis to evaluate N'-bis (2-pyridylmethylidene)- 1,2-diiminoethane (BPIE) Schiff base against AZ91D alloy corrosion in 0.01 mol/L HCl was investigated by different electrochemical methods. Potentiodynamic polarization curves revealed that the BPIE acts as a mixed-type corrosion inhibitor. Electrochemical impedance spectroscopy (EIS) measurements confirmed the corrosion inhibition effect of the BPIE. As the inhibitor concentration increased, the charge transfer resistance increased and the double layer capacitance decreased due to more inhibitor adsorption on the surface. The results obtained by analysis of electrochemical noise (EN) data in time and frequency domains are in good agreement with EIS and polarization results. Moreover, scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray (EDX) were used to investigate the corrosion inhibition of the BPIE. SEM images showed that the corrosion damage of the alloy surface reduced in the presence of BPIE. The intensity of the XRD peaks corresponding to magnesium-rich α phase increased in the presence of BPIE, indicating lower corrosion of alloy sample. Also, EDX analysis approved the corrosion inhibition performance of the BPIE. The studied Schiff base compound acts by physical adsorption on the alloy surface and its adsorption obeys the Langmuir isotherm.展开更多
The deformation behavior and the microstruc-ture evolution of as-cast AZ91D magnesium alloy without pre-homogenization treatment were systematically inves-tigated. The flow stress behavior was studied by com-pression ...The deformation behavior and the microstruc-ture evolution of as-cast AZ91D magnesium alloy without pre-homogenization treatment were systematically inves-tigated. The flow stress behavior was studied by com-pression tests in strain rate range of 0.001-1.000 s^-1 and deformation temperature range of 220-380 ℃ with a maximum deformation strain of 60 %. The dependence of flow stress on deformation temperature and strain rate was described by hyperbolic sine constitutive equation. Through regression analysis, the average apparent activa- tion energy and coefficient of strain rate sensitivity were estimated to be 181.98 kJ.mol^-1 and 0.14, respectively. The results also reveal that the variation of peak stress depends on strain rate and deformation temperature. Microstructure observation shows that, at temperatures higher than 300 ℃ and strain rates lower than 0.01 s^-1, DRX developed extensively at the grain boundaries and in the core of coarse grains, resulting in a more homogeneous microstructure. Furthermore, the effects of strain, defor-mation temperature, strain rate, and eutectic β phase on the microstructure evolution of as-cast AZ91D magnesium alloy were discussed.展开更多
The surface and interior temperature-time curves of blocky cerium modified AZ91D magnesium alloy were measured during a non-protective heating and melting process. Two inflection points with rapid increase in temperat...The surface and interior temperature-time curves of blocky cerium modified AZ91D magnesium alloy were measured during a non-protective heating and melting process. Two inflection points with rapid increase in temperature were found on both curves, which corresponded to the formation of "aulifiower" oxide on the surface and the occurrence of flame during melting. These two temperatures are therefore defined as oxidation point and ignition point, respectively. The interior temperature-time curve is similar to that measured on the surface except for a comparable time delay. The oxidation and ignition temperatures increase with Ce content, an average increase of 33℃ and 61℃ was found when Ce addition was about 1.0 wt %. However, the increasing rate of the oxidation and ignition temperature decreases with increasing Ce content. An addition of 0.6wt% Ce is recommended for ignition-resistant AZ91 magnesium alloy.展开更多
The influence of chemical composition on corrosion resistance of AZ91D magnesium alloys ingots has been investigated. Mass loss method was applied to evaluate the corrosion resistance of AZ91D alloys and the data were...The influence of chemical composition on corrosion resistance of AZ91D magnesium alloys ingots has been investigated. Mass loss method was applied to evaluate the corrosion resistance of AZ91D alloys and the data were analyzed by multiple regression. The results show that the corrosion resistance of this alloy can be improved by increasing Al, Zn and Mn in a certain degree, and will drop with increasing Si and heavy metals (Fe, Cu, Ni). It is found that ingots received from company F should be listed into unusable materials in terms of the corrosion resistance, while among the five suppliers, the only local company E supplied excellent AZ91D magnesium alloy ingots with the best corrosion resistance.展开更多
基金supported by the NSFC(grant nos.52171039&52130109)the National Key Research and Development Program of China(grant no.2020YFB2008400).
文摘Hot tearing is a serious destructive solidification defect of magnesium alloys and other casting metals.Quantitative and controllable measurements on the thermal and the mechanical behavior of an alloy during its solidification process are crucial for the understanding of hot tearing formation.We developed a new experimental method and setup to characterize hot tearing behavior via controlled cooling and active loading to force hot hearing formation on cooling at selected fractions of solid.The experimental setup was fully instrumented so that stress,strain,strain rate,and temperature can be measured in-situ while hot tearing was developing.An AZ91D magnesium alloy,which is prone to hot tearing,was used in this study.Results indicate that when hot hearing occurred,the local temperature,critical stress,and cumulative strain were directly affected by strain rate.Depending on the applied strain rate,hot tearing of the AZ91D magnesium alloy could occur in two solidification stages:one in the dendrite solidification stage(fS∼0.81-0.82)and the other in the eutectic solidification stage(fS∼0.99).AZ91D alloy exhibited distinct mechanical behaviors in these two ranges of fraction solid.
基金supported by the National Natural Science Foundation of China[Grant Nos.52275324 and 51975148]the Fundamental Research Funds for the Central Universities[Grant No.FRFCU5710051321].
文摘Wire arc additive manufacturing offers advantages in producing large metal structures.The current research on GTA-based wire arc additive manufacturing(GTA-WAAM)of magnesium alloys is focused on deformed magnesium alloys,mainly on the Mg-Al alloy system.However,there is little research on GTA-WAAM for casting magnesium alloy.This study investigates the microstructural characteristics and mechanical properties of AZ91D magnesium alloy(AZ91D-Mg)deposited by GTA-WAAM.Single-pass multilayer thin-walled components were successfully fabricated.The results show that equiaxed grains dominate the microstructure of the deposited samples.During the remelting process,the precipitated phases dissolve into the matrix,and they precipitate and grow from the matrix under the thermal effect of the subsequent thermal cycle.The mechanical properties in the vertical and horizontal directions are similar,showing higher overall mechanical properties than the casting parts.The average yield strength is 110.5 MPa,the ultimate tensile strength is 243.6 MPa,and the elongation is 11.7%.The overall hardness distribution in the deposited sample is relatively uniform,and the average microhardness is 59.6 HV_(0.2).
基金Project (2007CB613700) supported by the National Basic Research Program of ChinaProject supported by Research Program of Excellent Scholars Studying Abroad of Ministry of Human Resources and Social Security,China
文摘Ceramic oxide coatings were prepared on AZ91D magnesium alloys in alkaline silicate solution using micro-arc oxidation(MAO) technique.The corrosion behavior of MAO coating on AZ91D magnesium alloys in NaCl solutions with different concentrations(0.1%,0.5%,1.0%,3.5% and 5.0% in mass fraction) was evaluated by electrochemical measurements and immersion tests.The results showed that the corrosion rate of the MAO coated AZ91D increased with increasing chloride ion concentration.The main form of corrosion failure was localized corrosion for the MAO coated AZ91D immersed in higher concentration NaCl solutions(1.0%,3.5% and 5.0%),while it was general corrosion in dilute NaCl solutions(0.1% and 0.5%).Two different stages of the failure process of the MAO coated AZ91D could be identified:1) occurrence of the metastable pits and 2) growth of the pits.Different equivalent circuits were also proposed based on the results of electrochemical impedance spectroscopy(EIS) for the MAO coated AZ91D immersed in different concentrations of NaCl solutions for 120 h.
基金Project(11005151)supported by the Young Scientists Fund of the National Natural Science Foundation of ChinaProject(YETP1297)supported by the Beijing Higher Education Young Elite Teacher Project,ChinaProject(BEIJ2014110003)supported by the Undergraduate Research and Innovative Undertaking Program of Beijing,China
文摘The microarc oxidation(MAO) coatings produced at different current frequencies on AZ91 D magnesium alloys were studied systematically. The morphologies, thickness, corrosion performances, and tribological properties of the coatings were investigated by the scanning electron microscopy, the electrochemical measurement system, and MS-T3000 friction test rig, respectively. The results show that the structure of the coatings becomes denser, and thickness becomes thinner with the increase of the current frequency. It is also found that the corrosion resistance of the coatings produced at higher frequency is improved greatly and the difference of the corrosion current density becomes small with increasing current frequency, which is similar to that of the coating thickness. The tribological test shows that the friction coefficient decreases with increasing the current frequency and the wear resistance of the coatings is influenced by both the thickness and structures. All these results were explained by analyzing the growing process of the MAO coating.
基金Project (50801056) supported by the National Natural Science Foundation of ChinaProject (2005DKA10400-Z20) supported by the National R&D Infrastructure and Facility Development Program of ChinaProject supported by the Zijin Project of Zhejiang University, China
文摘Micro-arc oxidation (MAO) process was carried out on AZ91D alloy in alkaline borate solution using an alternative square-wave power source with different parameters. The effects of voltage, frequency and duty cycle on the coatings were investigated by orthogonal experiment. It is found that the thickness of coatings increases with the increase of voltage and duty cycle, but decreases with the increase of frequency. The structure and morphology of the coatings also depend on voltage, frequency and duty cycle. The coatings become more porous and crack with increasing voltage and duty cycle. The coating is thin and transparent when the voltage is lower than 120 V. The corrosion resistances of different coatings were evaluated by polarization curves and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl (mass fraction) solution. When the optimized values of voltage, frequency and duty cycle are 140 V, 2 000 Hz and 0.4, respectively, the anodic coating shows the best corrosion resistance.
文摘The microstructural evolution of AZ91D magnesium alloy prepared by means of the cyclic upsetting-extrusion and partial remelting was investigated. The effects of remelting temperature and holding time on microstructure of semi-solid AZ91D magnesium alloy were studied. Furthermore, tensile properties of thixoextruded AZ91D magnesium alloy components were determined. The results show that the cyclic upsetting-extrusion followed by partial remelting is effective in producing semi-solid AZ91D magnesium alloy for thixofonning. During the partial remelting, with the increase of remelting temperature and holding time, the solid grain size increases and the degree of spheroidization tends to be improved. The tensile mechanical properties of thixoextruded AZ91D magnesium alloy components produced by cyclic upsetting-extrusion and partial remelting are better than those of the same alloy produced by casting.
基金Project(51275295)supported by the National Natural Science Foundation of ChinaProjects(20120073120011,20130073110052)supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘The semi-solid slurry of AZ91 D magnesium alloy was prepared by gas bubbling process.The effect of processing parameters,including gas flow rate,cooling rate and stirring end temperature,on microstructure of AZ91 D semi-solid slurry was investigated.With increasing the gas flow rate from 0 to 5 L/min,the average size of primary α-Mg particles decreases from 119.1 to77.2μm and the average shape factor increases continuously from 0.1 to 0.596.The formation of non-dendritic primary α-Mg particles during gas bubbling is the result of combined effects of dendrite fragmentation and copious nucleation.With increasing the cooling rate from 3.6 to 14.6℃/min,the average particle size of primary α-Mg phase decreases from 105.0 to 68.1μm while the average shape factor peaks at 9.1℃/min.Both high and low cooling rates can induce dendritic growth of primary α-Mg particles.Changing the stirring end temperature from 590 to 595℃ has little effect on the average size and shape factor of primary α-Mg particles in AZ91 D semi-solid slurry.The insensitivity of semi-solid microstructures to the stirring end temperature is attributed to the sufficient quantity of primary particles formed in the melt.
基金Projects(50674038,50974048)supported by the National Natural Science Foundation of ChinaProject(200802140004)supported by Doctoral Fund of Ministry of Education of China
文摘Low temperature mechanical properties of AZ91D magnesium alloy fabricated by solid recycling process from recycled scraps were studied. Various microstructural analyses were performed using optical microscopy (OM) and scanning electron microscopy (SEM). The recycled specimens consist of fine grains due to dynamic recrystallization and the interfaces of original individual scraps are not identified. Tensile tests were performed at a strain rate of 5 x 10 3 s 1 at room temperature (27 ~C), -70, -100 and 130 ~C, respectively. Ultimate tensile strength of the specimens increases slightly with decreasing the tensile temperature, and elongation to failure decreases with decreasing the tensile temperature. The tensile specimens at -130 ~C show the highest ultimate tensile strength of 360.65 MPa and the lowest elongation to failure of 5.46%. Impact tests were performed at room temperature (27 ~C), -70 and -130 ~C, respectively. Impact toughness decreases with decreasing the impact temperature. The impact specimens at -130 ~C show the lowest impact toughness of 3.06 J/cm2.
基金Project(51371116)supported by the National Natural Science Foundation of ChinaProject(2009AA033501)supported by the Ministry of Science and Technology,China
文摘Electroless nickel plating on AZ91D substrate with a new and eco-friendly pretreatment process based on tuning an electrochemical homogeneous surface was investigated. The morphology, deposition process, chemical composition and microstructure of Ni-P coating were studied. It is indicated that β phases are selectively removed, producing a microstructural homogeneous surface and the subsequent uniform and compact Zn immersion layer. A defect-free and well adhesive Ni-P coating can be successfully obtained due to its uniform nucleation and growth based on such pretreatment. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests reveal that Ni-P coating could significantly improve the corrosion resistance of AZ91D substrate.
文摘The investment on semi-solid die casting processes of AZ91D magnesium alloy brackets for generators in JH70-type motorbikes is introduced. The processes of low super-heat and cooling slope for the preparation of billets with non-dendritic microstructure, the remelting of billets for thixoforming and the parameters in the process of semi-sohd thixoforming have been researched. The results show that primary billets with non-dendritical structures can be prepared by forming great amount of nuclei in melt via the process of low super heat. By optimizing the remelting process through adjusting the current of the induced equipment, semi-solid billets with a structure of spherical grains were obtained from the primary billets with non-dendritical structure. The range of 580℃ to 583℃ is the proper remelting temperatures by which the billets have an expected thixotropy and can be transferred to a die-casting machine. The optimized parameters of semi-solid forming in a die-casting machine are as follows: the area of the ingate in the die is 383.5 mm^2, the speed of the pierce of the machine 5 m/s, the shot pressure of the pierce 75 MPa, and the maintenance pressure of the pierce 350 MPa. The castings of brackets for supporting generators in JH70 type motorbikes were formed by adopting the optimized processes and parameters mentioned above.
基金supported by the Open Fund of the State Key Laboratory of Advanced Welding Production Technology in Harbin Institute of Technology,Chinathe Open Fund of the State Key Laboratory of Materials Processing and Die&Mould Technology in Huazhong University of Science and Technology,China
文摘To improve the sliding wear resistance of AZ91D magnesium alloy, Cu-based amorphous composite coatings made of CuaTTi34Zr11Nis and Cu47Ti34Zr11Ni8+20 wt pct SiC powders were fabricated on AZ91D magnesium alloy by laser cladding, respectively. SEM (scanning electron microscopy), EDS (energy dispersive X-ray spectroscopy), XRD (X-ray diffraction) and TEM (transmission electron microscopy) techniques were employed to study the phases of the coatings. The results show that the coatings mainly consist of amorphous phase and different intermetallic compounds. The reason of formation of amorphous phase and the function of SiC particles were explained in details.
基金Projects(50674038, 50974048) supported by the National Natural Science Foundation of ChinaProject(200802140004) supported by Doctoral Fund of Ministry of Education of China
文摘A method for recycling AZ91D magnesium alloy scraps directly by hot extrusion was studied.Various microstructural analyses were performed using the techniques of optical microscopy,scanning electron microscopy(SEM)and energy dispersive spectroscopy(EDS).Microstructural observations revealed that all the recycled specimens consisted of fine grains due to the dynamic recrystallization.The main strengthening mechanism of the recycled specimen was grain refinement strengthening and homogeneous distribution of oxide precipitates.The interfaces of individual scraps of extruded materials were not identified when the scraps were extruded with the extrusion ratio of 40-1.Oxidation layers of the scraps were broken into pieces by high compressive and shear forces under the extrusion ratio of 40-1.The ultimate tensile strength and elongation to failure increased with increasing the extrusion ratio.Recycled specimens with the extrusion ratio of 40:1 showed higher ultimate tensile strength of 342.61 MPa and higher elongation to failure of 11.32%,compared with those of the cast specimen.
文摘To investigate the thixotropic fluidities, microstructures and mechanical properties of semi-solid AZ91D magnesium alloy during reheating, a self-made die set with channels of different sizes were used. The results show that critical forming forces and maximal forming forces could be obtained and related to the holding times in the semi-solid forming process. In the holding time of 0-2700 s, with increasing the holding time, maximal forming force decreased sharply and critical forming force decreased slowly. In the whole thixotropic flowing process, the filling-in was steady and the surface fineness was good. The forming force increased when the slurry changed the flowing direction or flowed from the big-diameter chamber to the small-diameter one. The tensile strength and elongation to failure of the sample after holding time for 2700 s, compared to as-cast sample, are increased by approximately 42.7% and 180%, respectively, and the fractured surfaces presented dimple-like pattern.
基金Project(2006CB605203) supported by National Basic Research Program of ChinaProject(2006AA03Z115) supported by the National High-tech Research and Development Program of ChinaProject(2006BAE04B09-4) supported by the National Key Technologies R&D Program of China during the 11th Five-Year Plan Period
文摘A self-developed taper barrel rheomoulding(TBR)machine was introduced,and the rheo-diecasting process was implemented by combining TBR machine with the high pressure die casting(HPDC)machine.Microstructural characteristics of the rheo-diecasting components were investigated at different rotation speeds.Flow characteristics and microstructural evolution of the semi-solid slurry during the rheo-diecasting process were analyzed and the mechanical properties of the rheo-diecasting components were studied.The experimental results show that the process is able to obtain such components in which the primaryα-Mg particles are fine,nearly spherical and uniformly distributed in the matrix.When the rotation speed of internal taper barrel is 700 r/min,the primaryα-Mg particles get a mean diameter of about 45μm and a shape factor of about 0.81.The magnesium alloy melt has complex stirring-fixed flow characteristics when flowing in TBR machine.Compared with conventional die-casing process,the rheo-diecasting process can improve the mechanical properties of components;especially,the elongation is improved by 80%.
文摘The magnesium alloy is prone to burn during die-casting, which limits its applications severely, so the effect of adding rare earth (RE) on the ignition-proof of AZ91D Mg alloy is studied. The results indicate that the addition of mischmetal RE elements has a remarkable influence on the ignition-proof property of the magnesium alloy. It is found that the ignition temperature of the magnesium alloy can be greatly raised by adding a proper amount of RE. When the amount is 0.1wt%, the ignition temperature reaches 877℃ which is 206℃ higher than that of AZ91D without RE and the mechanical properties of the alloy are also improved, However, the amount of RE must be properly controlled because too much RE would induce grain coarsening and reduce the mechanical properties.
基金This work was supported by the National Natural Science Foundation of China(No.50271054)the State Educational Ministry for Scientific Research Foundation for the Returned Overseas Chinese Scholars.
文摘As-cast and corrosive microstructures of AZ91D alloy containing various Ce contents were observed by optical microscope (OM). The phase compositions of the alloys before and after the corrosion were analyzed by X-ray diffraction (XRD). Meanwhile, the corrosion resistance of the alloys was tested by weight loss and potentiodynamic polarization curve methods respectively. The results show that rod-like Al4Ce phase is formed in AZ91D alloy containing certain Ce content and as-cast microstructures are refined. AZ91D-0.7%Ce alloy has good grain refinement effect. The addition of Ce can reduce the corrosion rate and corrosion current density of AZ91D alloy and those of AZ91D-0.1%Ce alloy reach the minimum, which are 0.35mg/(cm2·d) and 2.761μA/cm2 with 75% and 86% reduction, respectively. The increasing volume fraction and reticular degree of β phase can improve the corrosion resistance of the alloys.
文摘The inhibition effect of electrochemical noise, EIS and surface analysis to evaluate N'-bis (2-pyridylmethylidene)- 1,2-diiminoethane (BPIE) Schiff base against AZ91D alloy corrosion in 0.01 mol/L HCl was investigated by different electrochemical methods. Potentiodynamic polarization curves revealed that the BPIE acts as a mixed-type corrosion inhibitor. Electrochemical impedance spectroscopy (EIS) measurements confirmed the corrosion inhibition effect of the BPIE. As the inhibitor concentration increased, the charge transfer resistance increased and the double layer capacitance decreased due to more inhibitor adsorption on the surface. The results obtained by analysis of electrochemical noise (EN) data in time and frequency domains are in good agreement with EIS and polarization results. Moreover, scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray (EDX) were used to investigate the corrosion inhibition of the BPIE. SEM images showed that the corrosion damage of the alloy surface reduced in the presence of BPIE. The intensity of the XRD peaks corresponding to magnesium-rich α phase increased in the presence of BPIE, indicating lower corrosion of alloy sample. Also, EDX analysis approved the corrosion inhibition performance of the BPIE. The studied Schiff base compound acts by physical adsorption on the alloy surface and its adsorption obeys the Langmuir isotherm.
基金financially supported by the National Natural Science Foundation of China(No.51075098)
文摘The deformation behavior and the microstruc-ture evolution of as-cast AZ91D magnesium alloy without pre-homogenization treatment were systematically inves-tigated. The flow stress behavior was studied by com-pression tests in strain rate range of 0.001-1.000 s^-1 and deformation temperature range of 220-380 ℃ with a maximum deformation strain of 60 %. The dependence of flow stress on deformation temperature and strain rate was described by hyperbolic sine constitutive equation. Through regression analysis, the average apparent activa- tion energy and coefficient of strain rate sensitivity were estimated to be 181.98 kJ.mol^-1 and 0.14, respectively. The results also reveal that the variation of peak stress depends on strain rate and deformation temperature. Microstructure observation shows that, at temperatures higher than 300 ℃ and strain rates lower than 0.01 s^-1, DRX developed extensively at the grain boundaries and in the core of coarse grains, resulting in a more homogeneous microstructure. Furthermore, the effects of strain, defor-mation temperature, strain rate, and eutectic β phase on the microstructure evolution of as-cast AZ91D magnesium alloy were discussed.
基金the Hi-Tech Research and Development Program of China (grant No.2002AA336080) the National Basic Research Program of China (grant No. G2000067202) and Jiangxi Provincial Department of Education.
文摘The surface and interior temperature-time curves of blocky cerium modified AZ91D magnesium alloy were measured during a non-protective heating and melting process. Two inflection points with rapid increase in temperature were found on both curves, which corresponded to the formation of "aulifiower" oxide on the surface and the occurrence of flame during melting. These two temperatures are therefore defined as oxidation point and ignition point, respectively. The interior temperature-time curve is similar to that measured on the surface except for a comparable time delay. The oxidation and ignition temperatures increase with Ce content, an average increase of 33℃ and 61℃ was found when Ce addition was about 1.0 wt %. However, the increasing rate of the oxidation and ignition temperature decreases with increasing Ce content. An addition of 0.6wt% Ce is recommended for ignition-resistant AZ91 magnesium alloy.
文摘The influence of chemical composition on corrosion resistance of AZ91D magnesium alloys ingots has been investigated. Mass loss method was applied to evaluate the corrosion resistance of AZ91D alloys and the data were analyzed by multiple regression. The results show that the corrosion resistance of this alloy can be improved by increasing Al, Zn and Mn in a certain degree, and will drop with increasing Si and heavy metals (Fe, Cu, Ni). It is found that ingots received from company F should be listed into unusable materials in terms of the corrosion resistance, while among the five suppliers, the only local company E supplied excellent AZ91D magnesium alloy ingots with the best corrosion resistance.