In an effort to clarify the formation mechanism of LPSO structure in Mg-Y-Zn alloy,the chemical environment and structural ordering in liquid Mg-rich Mg-Y-Zn system are investigated with the aid of ab-initio molecular...In an effort to clarify the formation mechanism of LPSO structure in Mg-Y-Zn alloy,the chemical environment and structural ordering in liquid Mg-rich Mg-Y-Zn system are investigated with the aid of ab-initio molecular dynamics simulation.In liquid Mg-rich Mg-Y alloys,the strong Mg-Y interaction is determined,which promotes the formation of fivefold symmetric local structure.For Mg-Zn alloys,the weak Mg-Zn interaction results in the fivefold symmetry weakening in the liquid structure.Due to the coexistence of Y and Zn,the strong attractive interaction is introduced in liquid Mg-Y-Zn ternary alloy,and contributes to the clustering of Mg,Y,Zn launched from Zn.What is more,the distribution of local structures becomes closer to that in pure Mg compared with that in binary Mg-Y and Mg-Zn alloys.These results should relate to the origins of the Y/Zn segregation zone and close-packed stacking mode in LPSO structure,which provides a new insight into the formation mechanism of LPSO structure at atomic level.展开更多
The substituent effect of sulfoxides in solvent extraction of palladium is investigated theoretically by using di-n-hexyl and diphenyl sulfoxide-palladium (Ⅱ) adducts as model complexes. RHF, DFT and two half-and-h...The substituent effect of sulfoxides in solvent extraction of palladium is investigated theoretically by using di-n-hexyl and diphenyl sulfoxide-palladium (Ⅱ) adducts as model complexes. RHF, DFT and two half-and-half functional (BHandHLYP and BHandH) methods have been applied in the geometry optimization, and BHandH method at the 6-31G^* level (Pd, 3-21G^*) can give adequate accuracy for both free sulfoxides and their Pd (Ⅱ) complexes. As compared to diphenyl sulfoxide (DPSO), the better affinity of di-n-hexyl sulfoxide (DHSO) towards Pd(Ⅱ) has been reasonably explained by a stronger electronic transfer, shorter Pd-S bond length and a larger binding energy in its Pd (Ⅱ) complex.展开更多
Mg2Sn(100)surfaces were investigated using ab-initio method based on density functional theory in order to explore the surface properties.It is found that both the eleven-layers for Mg-termination surfaces and the nin...Mg2Sn(100)surfaces were investigated using ab-initio method based on density functional theory in order to explore the surface properties.It is found that both the eleven-layers for Mg-termination surfaces and the nine-layers for Sn-termination surfaces are all converged very well.The effects of relaxation mainly occurred within the three outermost atomic layers for both Mg and Sn terminations during the surface relaxation.Mg-termination surfaces are more stable than Sn-termination surfaces according to the analysis of surface energy.The density of states reveals the metallic property of both Mg-termination and Sn-termination surfaces.Covalent bonding exists in Mg2Sn(100)surfaces according to the analysis of partial density of states.展开更多
According to first-principles density functional calculations, we have investigated the magnetic properties of Mn- doped GaN with defects, Ga1-x-yVGxMny N1-z-tVNzOt with Mn substituted at Ga sites, nitrogen vacancies ...According to first-principles density functional calculations, we have investigated the magnetic properties of Mn- doped GaN with defects, Ga1-x-yVGxMny N1-z-tVNzOt with Mn substituted at Ga sites, nitrogen vacancies VN, gallium vacancies VG and oxygen substituted at nitrogen sites. The magnetic interaction in Mn-doped GaN favours the ferromagnetic coupling via the double exchange mechanism. The ground state is found to be well described by a model based on a Mn3+-d5 in a high spin state coupled via a double exchange to a partially delocalized hole accommodated in the 2p states of neighbouring nitrogen ions. The effect of defects on ferromagnetic coupling is investigated. It is found that in the presence of donor defects, such as oxygen substituted at nitrogen sites, nitrogen vacancy antiferromagnetic interactions appear, while in the case of Ga vacancies, the interactions remain ferromagnetic; in the case of acceptor defects like Mg and Zn codoping, ferromagnetism is stabilized. The formation energies of these defects are computed. Furthermore, the half-metallic behaviours appear in some studied compounds.展开更多
Thomas-Fermi theory is an approximate method, which is widely used to describe the properties of matter at various hierarchical levels (atomic nucleus, atom, molecule, solid, etc.). Special development is achieved u...Thomas-Fermi theory is an approximate method, which is widely used to describe the properties of matter at various hierarchical levels (atomic nucleus, atom, molecule, solid, etc.). Special development is achieved using Thomas-Fermi theory to the theory of extreme states of matter appearing under high pressures, high temperatures or strong external fields. Relevant sections of physics and related sciences (astrophysics, quantum chemistry, a number of applied sciences) determine the scope of Thomas-Fermi theory. Popularity Thomas-Fermi theory is related to its relative simplicity, clarity and versatility. The latter means that result of the calculation by Thomas-Fermi theory applies immediately to all chemical elements: the transition from element to element is as simple scale transformation. These features make it highly convenient tool for qualitative and, in many cases, quantitative analysis.展开更多
We report results from several ab-initio computations of electronic, transport and bulk properties of zinc-blende beryllium selenide (zb-BeSe). Our nonrelativistic calculations utilized a local density approximation (...We report results from several ab-initio computations of electronic, transport and bulk properties of zinc-blende beryllium selenide (zb-BeSe). Our nonrelativistic calculations utilized a local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO). The key distinction of our calculations from other DFT calculations is the implementation of the Bagayoko, Zhao and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF), in the LCAO formalism. Our calculated, indirect band gap is 5.46 eV, from Γto a conduction band minimum between Г and X, for a room temperature lattice constant of 5.152 Å. Available, room temperature experimental band gaps of 5.5 (direct) and 4 - 4.5 (unspecified) point to the need for additional measurements of this gap. Our calculated bulk modulus of 92.35 GPa is in excellent agreement with experiment (92.2 ±?1.8 GPa). Our predicted equilibrium lattice constant and band gap, at zero temperature, are 5.0438 Åand 5.4 eV, respectively.展开更多
Thomas-Fermi theory is an approximate method, which is widely used to describe the properties of matter at various hierarchical levels (atomic nucleus, atom, molecule, solid, etc.). Special development is achieved usi...Thomas-Fermi theory is an approximate method, which is widely used to describe the properties of matter at various hierarchical levels (atomic nucleus, atom, molecule, solid, etc.). Special development is achieved using Thomas-Fermi theory to the theory of extreme states of matter appearing under high pressures, high temperatures or strong external fields. Relevant sections of physics and related sciences (astrophysics, quantum chemistry, a number of applied sciences) determine the scope of Thomas-Fermi theory. Popularity Thomas-Fermi theory is related to its relative simplicity, clarity and versatility. The latter means that the result of the calculation by Thomas-Fermi theory applies immediately to all chemical elements: the transition from element to element is as simple scale transformation. These features make it to be a highly convenient tool for qualitative and, in many cases, and quantitative analysis.展开更多
The present work performs self-consistent ab initio full-potential linear muffin-tin orbital (FP-LMTO) method to study the structural and electronic properties of the ternary ZnxCd1-xSe alloy, based on density functio...The present work performs self-consistent ab initio full-potential linear muffin-tin orbital (FP-LMTO) method to study the structural and electronic properties of the ternary ZnxCd1-xSe alloy, based on density functional theory (DFT). In this approach, both the local density approximation (LDA) and the generalized gradient approximation (GGA) were used for the exchange-correlation potential calculation. The ground-state properties are determined for the bulk materials CdSe, ZnSe and their alloy in cubic phase. In particular, the lattice constant, bulk modulus, electronic band structures and effective mass. We mainly showed deviation of the lattice parameter and bulk modulus from Vegard’s law of our alloys. We also presented the microscopic origins of the gap bowing using the approach of Zunger et al. The results are compared with other theoretical calculations and experimental data and are in reasonable agreement.展开更多
Our calculations are based on the modeling technique and simulation Ab-Initio that appeals to the Density Functional Theory (DFT) relying on the Full-Potential Linearized Augmented Plane Waves (FP-LAPW) method that re...Our calculations are based on the modeling technique and simulation Ab-Initio that appeals to the Density Functional Theory (DFT) relying on the Full-Potential Linearized Augmented Plane Waves (FP-LAPW) method that requires a calculation process using approximations such as Local Density (LDA) and Generalized Gradient (GGA) developed in the modelling software of nanostructures WIEN2k. The optimal structure of the binary semiconductor ZnSe crystallizing in the complex phase of Zinc Blende (B3) was determined by studying the variation of energy depending on the volume of the elementary cell. Then the electronic properties of the optimized state were analyzed such as the gap energy, the total density of states (TDOS), the partial density of states (PDOS) and the repartition of the electronic charge density. The obtained results were successful compared with other theoretical and experimental values reported in literature.展开更多
Presents the ab initio calculations performed for different symmetry groups of neutral molecular N 2 dimer, and the calculation of ground state and low lying singlet excited states for each symmetry group and conclude...Presents the ab initio calculations performed for different symmetry groups of neutral molecular N 2 dimer, and the calculation of ground state and low lying singlet excited states for each symmetry group and concludes from the results that there is an electric dipole transition between X 1A g and a 1B 3u (singlet singlet) excited states belonging to D 2h group symmetry, and discusses the vibrational energy levels and emission spectra calculates for this transition.展开更多
The theoretical investigation of the potential energy curves, in the representation 2s+1Λ(+/-), of the 27 low-lying Doublet and Quartet electronic states of the BP+ molecular ion has been performed with the methods i...The theoretical investigation of the potential energy curves, in the representation 2s+1Λ(+/-), of the 27 low-lying Doublet and Quartet electronic states of the BP+ molecular ion has been performed with the methods in quantum chemistry, the Complete Active Space Self Consistent Field (CASSCF) and the Multireference Configuration Interaction (MRCI) calculations. The harmonic vibrational frequency ωe, the inter-nuclear distance at equilibrium Re, the rotational constant Be, the electronic energy with respect to the minimum ground state energy Te, and the permanent dipole moment have also been calculated. Twenty-three new electronic states have been investigated here for the first time. The comparison between the values of the present work and those available in the literature for several electronic states shows a good agreement. These investigated data can be a conducive to further work on BP+ molecular ion in both experimental and theoretical research.展开更多
Carbon nanomaterials (CNMs) are prompting candidates tor next generational electronics. In this review we provide a mini overview of recent results on the conductivity of carbon-based molecular junctions obtained fr...Carbon nanomaterials (CNMs) are prompting candidates tor next generational electronics. In this review we provide a mini overview of recent results on the conductivity of carbon-based molecular junctions obtained from ab-mitio methods. CNMs used as nanoelectrodes and molecular materials in molecular junctions are discussed. The flmctionalities that include the nanomechanically controlled molecular conductance switches, negative differential resistance devices, and electronic rectifiers realized by using CNMs have been demonstrated.展开更多
In this paper,we report a method through the combination of ab-initio calculations and partial least squares(PLS)analysis to develop the Quantitative Structure eActivity Relationship(QSAR)formulations of cathode volum...In this paper,we report a method through the combination of ab-initio calculations and partial least squares(PLS)analysis to develop the Quantitative Structure eActivity Relationship(QSAR)formulations of cathode volume changes in lithium ion batteries.The PLS analysis is based on ab-initio calculation data of 14 oxide cathodes with spinel structure LiX2O4 and 14 oxide cathodes with layered-structure LiXO_(2)(X=Ti,V,Cr,Mn,Fe,Co,Ni,Nb,Mo,Ru,Rh,Pd,Ta,Ir).Five types of descriptors,describing the characteristics of each compound from crystal structure,element,composition,local distortion and electronic level,with 34 factors in total,are adopted to obtain the QSAR formulation.According to the variable importance in projection analysis,the radius of X4t ion,and the X octahedron descriptors make major contributions to the volume change of cathode during delithiation.The analysis is hopefully applied to the virtual screening and combinatorial design of low-strain cathode materials for lithium ion batteries.展开更多
In this paper, we explored the structural, elastic and mechanical properties of the strongly correlated electron systems, intermetallic Ln-Au(Ln = Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) in cubic structure,using...In this paper, we explored the structural, elastic and mechanical properties of the strongly correlated electron systems, intermetallic Ln-Au(Ln = Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) in cubic structure,using PF-LAPW method within the density functional theory. Structural properties of these intermetallics were investigated by treating the exchange-correlation potential with the GGA-PBE, GGA-PBEsol and GGA + U. The effectiveness of the U for the structural properties as compared to other methods confirms the strong correlated nature of these compounds and the calculated lattice constants endorse the divalency of Yb. The results demonstrate the stable cubic CsCl structure of these compounds. Bulk modulus, Young's modulus, shear modulus, B/G ratio, Cauchy pressure, Poisson's ratio, anisotropic ratio,Kleinman parameters and Lame's coefficients were studied using the PBEsol to evaluate their importance in various types of engineering applications. The most prominent features of these compounds are their ductility, very high melting points, resistance to corrosion, and anisotropic nature.展开更多
Desorption energies of dichloromethane (CH2C12) and water (H20) in a metal-organic framework, MIL-53(A1), were investi- gated by the combination of experimental (differential scanning calorimeter, DSC) and com...Desorption energies of dichloromethane (CH2C12) and water (H20) in a metal-organic framework, MIL-53(A1), were investi- gated by the combination of experimental (differential scanning calorimeter, DSC) and computational (ab-initio calculations) methods. The differences of desorption energy and natural log of the frequency factor of CH2C12 and H20 in MIL-53(A1) were analyzed by a thermo active process using DSC measurements. The interaction energy of guest molecules with MIL-53(A1), which corresponds to the desorption in the thermal active process, was explored using ab-initio calculation. As a result of the difference in the interaction energies of H20 and CH2C12 in MIL-53(A1), the site near the p2-OH groups has two potential wells Both experimentally and computationally, MIL-53 presents the preferential adsorption of CH2C12 than H20.展开更多
基金supported by National Natural Science Foundation of China,China(No.51901117,51801116)Youth Innovation and Technology Support Program of Shandong Provincial Colleges and Universities,China(No.2020KJA002)+2 种基金Youth Fund of Shandong Academy of Sciences,China(2020QN0021)Innovation Pilot Project for Fusion of Science,Education and Industry(International Cooperation)from Qilu University of Technology(Shandong Academy of Sciences),China(No.2020KJC-GH03)Several Policies on Promoting Collaborative Innovation and Industrialization of Achievements in Universities and Research Institutes,China(No.2019GXRC030)。
文摘In an effort to clarify the formation mechanism of LPSO structure in Mg-Y-Zn alloy,the chemical environment and structural ordering in liquid Mg-rich Mg-Y-Zn system are investigated with the aid of ab-initio molecular dynamics simulation.In liquid Mg-rich Mg-Y alloys,the strong Mg-Y interaction is determined,which promotes the formation of fivefold symmetric local structure.For Mg-Zn alloys,the weak Mg-Zn interaction results in the fivefold symmetry weakening in the liquid structure.Due to the coexistence of Y and Zn,the strong attractive interaction is introduced in liquid Mg-Y-Zn ternary alloy,and contributes to the clustering of Mg,Y,Zn launched from Zn.What is more,the distribution of local structures becomes closer to that in pure Mg compared with that in binary Mg-Y and Mg-Zn alloys.These results should relate to the origins of the Y/Zn segregation zone and close-packed stacking mode in LPSO structure,which provides a new insight into the formation mechanism of LPSO structure at atomic level.
基金This work was supported by the NNSFC (20332030, 20572027), Research Grants Council of Hong Kong and SRF for ROCS, State Education Ministry
文摘The substituent effect of sulfoxides in solvent extraction of palladium is investigated theoretically by using di-n-hexyl and diphenyl sulfoxide-palladium (Ⅱ) adducts as model complexes. RHF, DFT and two half-and-half functional (BHandHLYP and BHandH) methods have been applied in the geometry optimization, and BHandH method at the 6-31G^* level (Pd, 3-21G^*) can give adequate accuracy for both free sulfoxides and their Pd (Ⅱ) complexes. As compared to diphenyl sulfoxide (DPSO), the better affinity of di-n-hexyl sulfoxide (DHSO) towards Pd(Ⅱ) has been reasonably explained by a stronger electronic transfer, shorter Pd-S bond length and a larger binding energy in its Pd (Ⅱ) complex.
基金This work was supported by the National Natural Science Foundation of China(Nos.51464034 and 51301107).
文摘Mg2Sn(100)surfaces were investigated using ab-initio method based on density functional theory in order to explore the surface properties.It is found that both the eleven-layers for Mg-termination surfaces and the nine-layers for Sn-termination surfaces are all converged very well.The effects of relaxation mainly occurred within the three outermost atomic layers for both Mg and Sn terminations during the surface relaxation.Mg-termination surfaces are more stable than Sn-termination surfaces according to the analysis of surface energy.The density of states reveals the metallic property of both Mg-termination and Sn-termination surfaces.Covalent bonding exists in Mg2Sn(100)surfaces according to the analysis of partial density of states.
文摘According to first-principles density functional calculations, we have investigated the magnetic properties of Mn- doped GaN with defects, Ga1-x-yVGxMny N1-z-tVNzOt with Mn substituted at Ga sites, nitrogen vacancies VN, gallium vacancies VG and oxygen substituted at nitrogen sites. The magnetic interaction in Mn-doped GaN favours the ferromagnetic coupling via the double exchange mechanism. The ground state is found to be well described by a model based on a Mn3+-d5 in a high spin state coupled via a double exchange to a partially delocalized hole accommodated in the 2p states of neighbouring nitrogen ions. The effect of defects on ferromagnetic coupling is investigated. It is found that in the presence of donor defects, such as oxygen substituted at nitrogen sites, nitrogen vacancy antiferromagnetic interactions appear, while in the case of Ga vacancies, the interactions remain ferromagnetic; in the case of acceptor defects like Mg and Zn codoping, ferromagnetism is stabilized. The formation energies of these defects are computed. Furthermore, the half-metallic behaviours appear in some studied compounds.
文摘Thomas-Fermi theory is an approximate method, which is widely used to describe the properties of matter at various hierarchical levels (atomic nucleus, atom, molecule, solid, etc.). Special development is achieved using Thomas-Fermi theory to the theory of extreme states of matter appearing under high pressures, high temperatures or strong external fields. Relevant sections of physics and related sciences (astrophysics, quantum chemistry, a number of applied sciences) determine the scope of Thomas-Fermi theory. Popularity Thomas-Fermi theory is related to its relative simplicity, clarity and versatility. The latter means that result of the calculation by Thomas-Fermi theory applies immediately to all chemical elements: the transition from element to element is as simple scale transformation. These features make it highly convenient tool for qualitative and, in many cases, quantitative analysis.
文摘We report results from several ab-initio computations of electronic, transport and bulk properties of zinc-blende beryllium selenide (zb-BeSe). Our nonrelativistic calculations utilized a local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO). The key distinction of our calculations from other DFT calculations is the implementation of the Bagayoko, Zhao and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF), in the LCAO formalism. Our calculated, indirect band gap is 5.46 eV, from Γto a conduction band minimum between Г and X, for a room temperature lattice constant of 5.152 Å. Available, room temperature experimental band gaps of 5.5 (direct) and 4 - 4.5 (unspecified) point to the need for additional measurements of this gap. Our calculated bulk modulus of 92.35 GPa is in excellent agreement with experiment (92.2 ±?1.8 GPa). Our predicted equilibrium lattice constant and band gap, at zero temperature, are 5.0438 Åand 5.4 eV, respectively.
文摘Thomas-Fermi theory is an approximate method, which is widely used to describe the properties of matter at various hierarchical levels (atomic nucleus, atom, molecule, solid, etc.). Special development is achieved using Thomas-Fermi theory to the theory of extreme states of matter appearing under high pressures, high temperatures or strong external fields. Relevant sections of physics and related sciences (astrophysics, quantum chemistry, a number of applied sciences) determine the scope of Thomas-Fermi theory. Popularity Thomas-Fermi theory is related to its relative simplicity, clarity and versatility. The latter means that the result of the calculation by Thomas-Fermi theory applies immediately to all chemical elements: the transition from element to element is as simple scale transformation. These features make it to be a highly convenient tool for qualitative and, in many cases, and quantitative analysis.
文摘The present work performs self-consistent ab initio full-potential linear muffin-tin orbital (FP-LMTO) method to study the structural and electronic properties of the ternary ZnxCd1-xSe alloy, based on density functional theory (DFT). In this approach, both the local density approximation (LDA) and the generalized gradient approximation (GGA) were used for the exchange-correlation potential calculation. The ground-state properties are determined for the bulk materials CdSe, ZnSe and their alloy in cubic phase. In particular, the lattice constant, bulk modulus, electronic band structures and effective mass. We mainly showed deviation of the lattice parameter and bulk modulus from Vegard’s law of our alloys. We also presented the microscopic origins of the gap bowing using the approach of Zunger et al. The results are compared with other theoretical calculations and experimental data and are in reasonable agreement.
文摘Our calculations are based on the modeling technique and simulation Ab-Initio that appeals to the Density Functional Theory (DFT) relying on the Full-Potential Linearized Augmented Plane Waves (FP-LAPW) method that requires a calculation process using approximations such as Local Density (LDA) and Generalized Gradient (GGA) developed in the modelling software of nanostructures WIEN2k. The optimal structure of the binary semiconductor ZnSe crystallizing in the complex phase of Zinc Blende (B3) was determined by studying the variation of energy depending on the volume of the elementary cell. Then the electronic properties of the optimized state were analyzed such as the gap energy, the total density of states (TDOS), the partial density of states (PDOS) and the repartition of the electronic charge density. The obtained results were successful compared with other theoretical and experimental values reported in literature.
文摘Presents the ab initio calculations performed for different symmetry groups of neutral molecular N 2 dimer, and the calculation of ground state and low lying singlet excited states for each symmetry group and concludes from the results that there is an electric dipole transition between X 1A g and a 1B 3u (singlet singlet) excited states belonging to D 2h group symmetry, and discusses the vibrational energy levels and emission spectra calculates for this transition.
文摘The theoretical investigation of the potential energy curves, in the representation 2s+1Λ(+/-), of the 27 low-lying Doublet and Quartet electronic states of the BP+ molecular ion has been performed with the methods in quantum chemistry, the Complete Active Space Self Consistent Field (CASSCF) and the Multireference Configuration Interaction (MRCI) calculations. The harmonic vibrational frequency ωe, the inter-nuclear distance at equilibrium Re, the rotational constant Be, the electronic energy with respect to the minimum ground state energy Te, and the permanent dipole moment have also been calculated. Twenty-three new electronic states have been investigated here for the first time. The comparison between the values of the present work and those available in the literature for several electronic states shows a good agreement. These investigated data can be a conducive to further work on BP+ molecular ion in both experimental and theoretical research.
基金supported by the National Natural Science Foundation of China(No.21825302,No.21903076)the Taishan Scholar Program of Shandong Province of China(tsqn201909122)。
文摘Carbon nanomaterials (CNMs) are prompting candidates tor next generational electronics. In this review we provide a mini overview of recent results on the conductivity of carbon-based molecular junctions obtained from ab-mitio methods. CNMs used as nanoelectrodes and molecular materials in molecular junctions are discussed. The flmctionalities that include the nanomechanically controlled molecular conductance switches, negative differential resistance devices, and electronic rectifiers realized by using CNMs have been demonstrated.
基金We acknowledge the National Natural Science Foundation of China(Grant Nos.11234013)“863”Project(Grant No.2015AA034201)Beijing S&T Project(Grant No.D161100002416003)for financial support and the Shanghai Supercomputer Center for providing computing resources.
文摘In this paper,we report a method through the combination of ab-initio calculations and partial least squares(PLS)analysis to develop the Quantitative Structure eActivity Relationship(QSAR)formulations of cathode volume changes in lithium ion batteries.The PLS analysis is based on ab-initio calculation data of 14 oxide cathodes with spinel structure LiX2O4 and 14 oxide cathodes with layered-structure LiXO_(2)(X=Ti,V,Cr,Mn,Fe,Co,Ni,Nb,Mo,Ru,Rh,Pd,Ta,Ir).Five types of descriptors,describing the characteristics of each compound from crystal structure,element,composition,local distortion and electronic level,with 34 factors in total,are adopted to obtain the QSAR formulation.According to the variable importance in projection analysis,the radius of X4t ion,and the X octahedron descriptors make major contributions to the volume change of cathode during delithiation.The analysis is hopefully applied to the virtual screening and combinatorial design of low-strain cathode materials for lithium ion batteries.
基金Project supported by the Higher Education Commission of Pakistan(HEC)(20-3959/NRPU/R&D/HEC2014/119)
文摘In this paper, we explored the structural, elastic and mechanical properties of the strongly correlated electron systems, intermetallic Ln-Au(Ln = Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) in cubic structure,using PF-LAPW method within the density functional theory. Structural properties of these intermetallics were investigated by treating the exchange-correlation potential with the GGA-PBE, GGA-PBEsol and GGA + U. The effectiveness of the U for the structural properties as compared to other methods confirms the strong correlated nature of these compounds and the calculated lattice constants endorse the divalency of Yb. The results demonstrate the stable cubic CsCl structure of these compounds. Bulk modulus, Young's modulus, shear modulus, B/G ratio, Cauchy pressure, Poisson's ratio, anisotropic ratio,Kleinman parameters and Lame's coefficients were studied using the PBEsol to evaluate their importance in various types of engineering applications. The most prominent features of these compounds are their ductility, very high melting points, resistance to corrosion, and anisotropic nature.
基金supported by the National Natural Science Foundation of China(21376026)the Fundamental Research Funds for the Central Universities(2015YJS172)
文摘Desorption energies of dichloromethane (CH2C12) and water (H20) in a metal-organic framework, MIL-53(A1), were investi- gated by the combination of experimental (differential scanning calorimeter, DSC) and computational (ab-initio calculations) methods. The differences of desorption energy and natural log of the frequency factor of CH2C12 and H20 in MIL-53(A1) were analyzed by a thermo active process using DSC measurements. The interaction energy of guest molecules with MIL-53(A1), which corresponds to the desorption in the thermal active process, was explored using ab-initio calculation. As a result of the difference in the interaction energies of H20 and CH2C12 in MIL-53(A1), the site near the p2-OH groups has two potential wells Both experimentally and computationally, MIL-53 presents the preferential adsorption of CH2C12 than H20.