Streamwater chemistry and spatial flow dynamics from a subalpine Abies fabri forest in an experimental watershed located in the east slope of Gongga Mountain were analyzed to gain insights into the gradient effect of ...Streamwater chemistry and spatial flow dynamics from a subalpine Abies fabri forest in an experimental watershed located in the east slope of Gongga Mountain were analyzed to gain insights into the gradient effect of primary community succession on the stream biogeochemical process. Results showed that high sand content(exceeding 80%) and porosity in the soil(exceeding 20% in A horizon and 35% in B horizon), as well as a thick humus layer on the soil surface, made the water exchange quickly in the Huangbengliu(HBL) watershed. Consequently, no surface runoff was observed, and the stream discharge changed rapidly with the daily precipitation. The flow trends of base ions in the stream water were influenced by the Abies fabri succession gradient. Ca 2+ , HCO - 3 and SO 2- 4 were the dominant anions in the streamwater in this region. A significant difference of Ca 2+ , HCO - 3 and SO 2- 4 concentration exported between the succession stages in the watershed can be found. But they had the similar temporal change in the stream flow. Ca 2+ , HCO - 3 and SO 2- 4 showed significantly negative correlations with the daily precipitation and the stream discharge. \;Concentrations of Cl -, Na +, K +, and Mg 2+ were low in all streamwaters monitored and we observed no differences along the Abies fabri succession gradient. Low ratios of Na:(Na+Ca) (range from 0.1 to 0.2) implied cations were from bedrock weathering(internal source process in the soil system) in this region. But, a variance analysis showed there were almost no differences between rainwater and streamwaters for Mg 2+ , Na +, K +, and Cl - concentrations. This indicated that they might be come from rainfall inputs(external source). The highly mobile capacity, rapid water exchange between precipitation and discharge, and long-term export lead to this observed pattern were suggested.展开更多
Litter is an important part of forest ecosystem and its decomposition process is the key link of nutrient cycling in forest ecosystem.Accurate determination of litter decomposition dynamics is very important to study ...Litter is an important part of forest ecosystem and its decomposition process is the key link of nutrient cycling in forest ecosystem.Accurate determination of litter decomposition dynamics is very important to study the pattern and process of forest ecosystem.This paper selected The Gongga Mountain Alpine Ecosystem Observation and Experiment Station at an altitude of 3000 m to observe and determine litter decomposition process of the Abies fabri forest over a long period of time.The results showed that:①The decomposition rate of litter was broadleaf>needles>dead branches,and the time required to decompose half of broadleaf,needles and dead branches was 6.8 years,10.5 years and 14.5 years respectively;the time of decompose 95%of them was 29.3 years,45.6 years and 63.1 years,respectively;②Regardless of broadleaf,needles or dead branches,the organic carbon content of them decreased with time,while the decomposition rate of organic carbon increased with time;By using the exponential decay model the decomposition coefficient of litter organic carbon calculated was broadleaf>needle>dead branches;③The organic carbon released by the annual decomposition of broadleaf,needles and dead branches in Abies fabri forest was 52.18,4.32 and 0.67 kg/hm^2,respectively.The total amount of organic carbon released by various litter was 61.13 kg/hm^2 per year,accounting for 6.58%of the total organic carbon of litter.展开更多
文摘Streamwater chemistry and spatial flow dynamics from a subalpine Abies fabri forest in an experimental watershed located in the east slope of Gongga Mountain were analyzed to gain insights into the gradient effect of primary community succession on the stream biogeochemical process. Results showed that high sand content(exceeding 80%) and porosity in the soil(exceeding 20% in A horizon and 35% in B horizon), as well as a thick humus layer on the soil surface, made the water exchange quickly in the Huangbengliu(HBL) watershed. Consequently, no surface runoff was observed, and the stream discharge changed rapidly with the daily precipitation. The flow trends of base ions in the stream water were influenced by the Abies fabri succession gradient. Ca 2+ , HCO - 3 and SO 2- 4 were the dominant anions in the streamwater in this region. A significant difference of Ca 2+ , HCO - 3 and SO 2- 4 concentration exported between the succession stages in the watershed can be found. But they had the similar temporal change in the stream flow. Ca 2+ , HCO - 3 and SO 2- 4 showed significantly negative correlations with the daily precipitation and the stream discharge. \;Concentrations of Cl -, Na +, K +, and Mg 2+ were low in all streamwaters monitored and we observed no differences along the Abies fabri succession gradient. Low ratios of Na:(Na+Ca) (range from 0.1 to 0.2) implied cations were from bedrock weathering(internal source process in the soil system) in this region. But, a variance analysis showed there were almost no differences between rainwater and streamwaters for Mg 2+ , Na +, K +, and Cl - concentrations. This indicated that they might be come from rainfall inputs(external source). The highly mobile capacity, rapid water exchange between precipitation and discharge, and long-term export lead to this observed pattern were suggested.
基金Sponsored by National Key Research and Development Program(2016YFC0503305)CAS Key Technology Talent Program(CAS201665)National Natural Science Foundation of China(No.41771062)
文摘Litter is an important part of forest ecosystem and its decomposition process is the key link of nutrient cycling in forest ecosystem.Accurate determination of litter decomposition dynamics is very important to study the pattern and process of forest ecosystem.This paper selected The Gongga Mountain Alpine Ecosystem Observation and Experiment Station at an altitude of 3000 m to observe and determine litter decomposition process of the Abies fabri forest over a long period of time.The results showed that:①The decomposition rate of litter was broadleaf>needles>dead branches,and the time required to decompose half of broadleaf,needles and dead branches was 6.8 years,10.5 years and 14.5 years respectively;the time of decompose 95%of them was 29.3 years,45.6 years and 63.1 years,respectively;②Regardless of broadleaf,needles or dead branches,the organic carbon content of them decreased with time,while the decomposition rate of organic carbon increased with time;By using the exponential decay model the decomposition coefficient of litter organic carbon calculated was broadleaf>needle>dead branches;③The organic carbon released by the annual decomposition of broadleaf,needles and dead branches in Abies fabri forest was 52.18,4.32 and 0.67 kg/hm^2,respectively.The total amount of organic carbon released by various litter was 61.13 kg/hm^2 per year,accounting for 6.58%of the total organic carbon of litter.