A detailed understanding of the distribution and potential of natural gas hydrate(NGHs)resources is crucial to fostering the industrialization of those resources in the South China Sea,where NGHs are abundant.In this ...A detailed understanding of the distribution and potential of natural gas hydrate(NGHs)resources is crucial to fostering the industrialization of those resources in the South China Sea,where NGHs are abundant.In this study,this study analyzed the applicability of resource evaluation methods,including the volumetric,genesis,and analogy methods,and estimated NGHs resource potential in the South China Sea by using scientific resource evaluation methods based on the factors controlling the geological accumulation and the reservoir characteristics of NGHs.Furthermore,this study compared the evaluation results of NGHs resource evaluations in representative worldwise sea areas via rational analysis.The results of this study are as follows:(1)The gas hydrate accumulation in the South China Sea is characterized by multiple sources of gas supply,multi-channel migration,and extensive accumulation,which are significantly different from those of oil and gas and other unconventional resources.(2)The evaluation of gas hydrate resources in the South China Sea is a highly targeted,stratified,and multidisciplinary evaluation of geological resources under the framework of a multi-type gas hydrate resource evaluation system and focuses on the comprehensive utilization of multi-source heterogeneous data.(3)Global NGHs resources is n×10^(15)m^(3),while the NGHs resources in the South China Sea are estimated to be 10^(13)m^(3),which is comparable to the abundance of typical marine NGHs deposits in other parts of the world.In the South China Sea,the NGHs resources have a broad prospect and provide a substantial resource base for production tests and industrialization of NGHs.展开更多
Gas flexible pipes are critical multi-layered equipment for offshore oil and gas development.Under high pressure conditions,small molecular components of natural gas dissolve into the polymer inner liner of the flexib...Gas flexible pipes are critical multi-layered equipment for offshore oil and gas development.Under high pressure conditions,small molecular components of natural gas dissolve into the polymer inner liner of the flexible pipes and further diffuse into the annular space,incurring annular pressure build-up and/or production of acidic environment,which poses serious challenges to the structure and integrity of the flexible pipes.Gas permeation in pipes is a complex phenomenon governed by various factors such as internal pressure and temperature,annular structure,external temperature.In a long-distance gas flexible pipe,moreover,gas permeation exhibits non-uniform features,and the gas permeated into the annular space flows along the metal gap.To assess the complex gas transport behavior in long-distance gas flexible pipes,a mathematical model is established in this paper considering the multiphase flow phenomena inside the flexible pipes,the diffusion of gas in the inner liner,and the gas seepage in the annular space under varying permeable properties of the annulus.In addition,the effect of a variable temperature is accounted.A numerical calculation method is accordingly constructed to solve the coupling mathematical equations.The annular permeability was shown to significantly influence the distribution of annular pressure.As permeability increases,the annular pressure tends to become more uniform,and the annular pressure at the wellhead rises more rapidly.After annular pressure relief followed by shut-in,the pressure increase follows a convex function.By simulating the pressure recovery pattern after pressure relief and comparing it with test results,we deduce that the annular permeability lies between 123 and 512 m D.The results help shed light upon assessing the annular pressure in long distance gas flexible pipes and thus ensure the security of gas transport in the emerging development of offshore resources.展开更多
Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential en...Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential energy and mineral resources for the development of human society.They also record the evolution process of the earth and improve the understanding of the earth.This review focuses on the diagenesis and formation mechanisms of black shales sedimentation,composition,evolution,and reconstruction,which have had a significant impact on the formation and enrichment of shale oil and gas.In terms of sedimentary environment,black shales can be classified into three types:Marine,terrestrial,and marine-terrestrial transitional facies.The formation processes include mechanisms such as eolian input,hypopycnal flow,gravity-driven and offshore bottom currents.From a geological perspective,the formation of black shales is often closely related to global or regional major geological events.The enrichment of organic matter is generally the result of the interaction and coupling of several factors such as primary productivity,water redox condition,and sedimentation rate.In terms of evolution,black shales have undergone diagenetic evolution of inorganic minerals,thermal evolution of organic matter and hydrocarbon generation,interactions between organic matter and inorganic minerals,and pore evolution.In terms of reconstruction,the effects of fold deformation,uplift and erosion,and fracturing have changed the stress state of black shale reservoirs,thereby having a significant impact on the pore structure.Fluid activity promotes the formation of veins,and have changed the material composition,stress structure,and reservoir properties of black shales.Regarding resource effects,the deposition of black shales is fundamental for shale oil and gas resources,the evolution of black shales promotes the shale oil and gas formation and storage,and the reconstruction of black shales would have caused the heterogeneous distribution of oil and gas in shales.Exploring the formation mechanisms and interactions of black shales at different scales is a key to in-depth research on shale formation and evolution,as well as the key to revealing the mechanism controlling shale oil and gas accumulation.The present records can reveal how these processes worked in geological history,and improve our understanding of the coupling mechanisms among regional geological events,black shales evolution,and shale oil and gas formation and enrichment.展开更多
The Qilian Mountain permafrost area located in the northern of Qinghai-Tibet Plateau is a favorable place for natural gas hydrate formation and enrichment,due to its well-developed fractures and abundant gas sources.U...The Qilian Mountain permafrost area located in the northern of Qinghai-Tibet Plateau is a favorable place for natural gas hydrate formation and enrichment,due to its well-developed fractures and abundant gas sources.Understanding the formation and distribution of multi-component gas hydrates in fractures is crucial in accurately evaluating the hydrate reservoir resources in this area.The hydrate formation experiments were carried out using the core samples drilled from hydrate-bearing sediments in Qilian Mountain permafrost area and the multi-component gas with similar composition to natural gas hydrates in Qilian Mountain permafrost area.The formation and distribution characteristics of multi-component gas hydrates in core samples were observed in situ by X-ray Computed Tomography(X-CT)under high pressure and low temperature conditions.Results show that hydrates are mainly formed and distributed in the fractures with good connectivity.The ratios of volume of hydrates formed in fractures to the volume of fractures are about 96.8%and 60.67%in two different core samples.This indicates that the fracture surface may act as a favorable reaction site for hydrate formation in core samples.Based on the field geological data and the experimental results,it is preliminarily estimated that the inventory of methane stored in the fractured gas hydrate in Qilian Mountain permafrost area is about 8.67×1013 m3,with a resource abundance of 8.67×108 m3/km2.This study demonstrates the great resource potential of fractured gas hydrate and also provides a new way to further understand the prospect of natural gas hydrate and other oil and gas resources in Qilian Mountain permafrost area.展开更多
In view of the problem that a single modeling method cannot predict the distribution of microfacies, a new idea of coupling modeling method to comprehensively predict the distribution of sedimentary microfacies was pr...In view of the problem that a single modeling method cannot predict the distribution of microfacies, a new idea of coupling modeling method to comprehensively predict the distribution of sedimentary microfacies was proposed, breaking the tradition that different sedimentary microfacies used the same modeling method in the past. Because different sedimentary microfacies have different distribution characteristics and geometric shapes, it is more accurate to select different simulation methods for prediction. In this paper, the coupling modeling method was to establish the distribution of sedimentary microfacies with simple geometry through the point indicating process simulation, and then predict the microfacies with complex spatial distribution through the sequential indicator simulation method. Taking the DC block of Bohai basin as an example, a high-precision reservoir sedimentary microfacies model was established by the above coupling modeling method, and the model verification results showed that the sedimentary microfacies model had a high consistency with the underground. The coupling microfacies modeling method had higher accuracy and reliability than the traditional modeling method, which provided a new idea for the prediction of sedimentary microfacies.展开更多
Exploration and development of large gas fields is an important way for a country to rapidly develop its natural gas industry.From 1991 to 2020,China discovered 68 new large gas fields,boosting its annual gas output t...Exploration and development of large gas fields is an important way for a country to rapidly develop its natural gas industry.From 1991 to 2020,China discovered 68 new large gas fields,boosting its annual gas output to 1925×108m3in 2020,making it the fourth largest gas-producing country in the world.Based on 1696 molecular components and carbon isotopic composition data of alkane gas in 70 large gas fields in China,the characteristics of carbon isotopic composition of alkane gas in large gas fields in China were obtained.The lightest and average values ofδ^(13)C_(1),δ13C2,δ13C3andδ13C4become heavier with increasing carbon number,while the heaviest values ofδ^(13)C_(1),δ13C2,δ13C3andδ13C4become lighter with increasing carbon number.Theδ^(13)C_(1)values of large gas fields in China range from-71.2‰to-11.4‰(specifically,from-71.2‰to-56.4‰for bacterial gas,from-54.4‰to-21.6‰for oil-related gas,from-49.3‰to-18.9‰for coal-derived gas,and from-35.6‰to-11.4‰for abiogenic gas).Based on these data,theδ^(13)C_(1)chart of large gas fields in China was plotted.Moreover,theδ^(13)C_(1)values of natural gas in China range from-107.1‰to-8.9‰,specifically,from-1071%o to-55.1‰for bacterial gas,from-54.4‰to-21.6‰for oil-related gas,from-49.3‰to-13.3‰for coal-derived gas,and from-36.2‰to-8.9‰for abiogenic gas.Based on these data,theδ^(13)C_(1)chart of natural gas in China was plotted.展开更多
We present a systematic summary of the geological characteristics,exploration and development history and current state of shale oil and gas in the United States.The hydrocarbon-rich shales in the major shale basins o...We present a systematic summary of the geological characteristics,exploration and development history and current state of shale oil and gas in the United States.The hydrocarbon-rich shales in the major shale basins of the United States are mainly developed in six geological periods:Middle Ordovician,Middle-Late Devonian,Early Carboniferous(Middle-Late Mississippi),Early Permian,Late Jurassic,and Late Cretaceous(Cenomanian-Turonian).Depositional environments for these shales include intra-cratonic basins,foreland basins,and passive continental margins.Paleozoic hydrocarbon-rich shales are mainly developed in six basins,including the Appalachian Basin(Utica and Marcellus shales),Anadarko Basin(Woodford Shale),Williston Basin(Bakken Shale),Arkoma Basin(Fayetteville Shale),Fort Worth Basin(Barnett Shale),and the Wolfcamp and Leonardian Spraberry/Bone Springs shale plays of the Permian Basin.The Mesozoic hydrocarbon-rich shales are mainly developed on the margins of the Gulf of Mexico Basin(Haynesville and Eagle Ford)or in various Rocky Mountain basins(Niobrara Formation,mainly in the Denver and Powder River basins).The detailed analysis of shale plays reveals that the shales are different in facies and mineral components,and"shale reservoirs"are often not shale at all.The United States is abundant in shale oil and gas,with the in-place resources exceeding 0.246×10^(12)t and 290×10^(12)m^(3),respectively.Before the emergence of horizontal well hydraulic fracturing technology to kick off the"shale revolution",the United States had experienced two decades of exploration and production practices,as well as theory and technology development.In 2007-2023,shale oil and gas production in the United States increased from approximately 11.2×10^(4)tons of oil equivalent per day(toe/d)to over 300.0×10^(4)toe/d.In 2017,the shale oil and gas production exceeded the conventional oil and gas production in the country.In 2023,the contribution from shale plays to the total U.S.oil and gas production remained above 60%.The development of shale oil and gas has largely been driven by improvements in drilling and completion technologies,with much of the recent effort focused on“cube development”or“co-development”.Other efforts to improve productivity and efficiency include refracturing,enhanced oil recovery,and drilling of“U-shaped”wells.Given the significant resources base and continued technological improvements,shale oil and gas production will continue to contribute significant volumes to total U.S.hydrocarbon production.展开更多
Natural gas hydrate(NGH)has been widely considered as an alternative to conventional oil and gas resources in the future energy resource supply since Trofimuk’s first resource assessment in 1973.At least 29 global es...Natural gas hydrate(NGH)has been widely considered as an alternative to conventional oil and gas resources in the future energy resource supply since Trofimuk’s first resource assessment in 1973.At least 29 global estimates have been published from various studies so far,among which 24 estimates are greater than the total conventional gas resources.If drawn in chronological order,the 29 historical resource estimates show a clear downward trend,reflecting the changes in our perception with respect to its resource potential with increasing our knowledge on the NGH with time.A time series of the 29 estimates was used to establish a statistical model for predict the future trend.The model produces an expected resource value of 41.46×1012 m3 at the year of 2050.The statistical trend projected future gas hydrate resource is only about 10%of total natural gas resource in conventional reservoir,consistent with estimates of global technically recoverable resources(TRR)in gas hydrate from Monte Carlo technique based on volumetric and material balance approaches.Considering the technical challenges and high cost in commercial production and the lack of competitive advantages compared with rapid growing unconventional and renewable resources,only those on the very top of the gas hydrate resource pyramid will be added to future energy supply.It is unlikely that the NGH will be the major energy source in the future.展开更多
China Geological Survey conducted the second trial production of natural gas hydrate(NGH)in the Shenhu Area in South China Sea(SCS)from 2019 to 2020.Compared with the first trial production in 2017,the second trial sh...China Geological Survey conducted the second trial production of natural gas hydrate(NGH)in the Shenhu Area in South China Sea(SCS)from 2019 to 2020.Compared with the first trial production in 2017,the second trial showed significantly increased daily gas production and total gas production,and removed some technical obstacles for large-scale NGH resource developments in the SCS.However,current NGH resource evaluation in the SCS is still at the stage of prospective gas content assessment,which is unable to guide further NGH exploration and development.This study utilized the hydrate phase balance to delineate the NGH distribution range and effective thickness and volumetric method to evaluate NGH resource.Based on the latest exploration and production data from the Shenhu Area,Monte Carlo simulation was performed to calculate the NGH resource amount with different probabilities.By assuming a 50%cumulative probability,the in-situ NGH resources in the SCS was estimated to be11.7×10^(12)m^(3) and the recoverable NGH resources was 2.8×10^(12)m^(3).These results will provide a more reliable resource basis for China to formulate comprehensive development strategies for oil and gas exploration in the SCS.展开更多
Natural gas resources in China are abundant. The undiscovered recoverable natural gas resources in China are estimated to be 19.27 ×10^12 m^3. Natural gas is mainly distributed in the middle and west China and of...Natural gas resources in China are abundant. The undiscovered recoverable natural gas resources in China are estimated to be 19.27 ×10^12 m^3. Natural gas is mainly distributed in the middle and west China and offshore areas of China. The Tarim Basin, Sichuan Basin, Ordos Basin, East China Sea Basin, Tsaidam Basin, Yinggehai Basin, and Qiongdongnan Basin are the main gas-bearing basins. The natural gas resources are not distributed evenly and are under-explored in China. The deeper horizons in east China, foreland basins and craton paleo-uplifts in the middle and west China, and the offshore basins are the main exploration areas in the future.展开更多
Natural gas hydrate(NGH)has attracted much attention as a new alternative energy globally.However,evaluations of global NGH resources in the past few decades have casted a decreasing trend,where the estimate as of tod...Natural gas hydrate(NGH)has attracted much attention as a new alternative energy globally.However,evaluations of global NGH resources in the past few decades have casted a decreasing trend,where the estimate as of today is less than one ten-thousandth of the estimate forty years ago.The NGH researches in China started relatively late,but achievements have been made in the South China Sea(SCS)in the past two decades.Thirty-five studies had been carried out to evaluate NGH resource,and results showed a flat trend,ranging from 60 to 90 billion tons of oil equivalent,which was 2-3 times of the evaluation results of technical recoverable oil and gas resources in the SCS.The big difference is that the previous 35 group of NGH resource evaluations for the SCS only refers to the prospective gas resource with low grade level and high uncertainty,which cannot be used to guide exploration or researches on development strategies.Based on the analogy with the genetic mechanism of conventional oil and gas resources,this study adopts the newly proposed genetic method and geological analogy method to evaluate the NGH resource.Results show that the conventional oil and gas resources are 346.29×10^(8)t,the volume of NGH and free dynamic field are 25.19×10^(4)km^(3) and(2.05-2.48)×10^(6)km^(3),and the total amount of in-situ NGH resources in the SCS is about(4.47-6.02)×10^(12)m^(3).It is considered that the resource of hydrate should not exceed that of conventional oil and gas,so it is 30 times lower than the previous estimate.This study provides a more reliable geological basis for further NGH exploration and development.展开更多
As an efficient clean energy,natural gas hydrate(NGH)has become a hot topic in recent researches.Since1990 s,China has made great achievements and progress in NGH exploration in the South China Sea(SCS),including dete...As an efficient clean energy,natural gas hydrate(NGH)has become a hot topic in recent researches.Since1990 s,China has made great achievements and progress in NGH exploration in the South China Sea(SCS),including determination of the favorable distribution areas and favorable strata thickness,identification of the dual source for accumulation,evaluation of the prospective gas contents,verification of the widespread existence,and confirmation of the technical recoverability of NGH resources.However,there are three major challenges in the NGH studies.First,all the 24 national key and major projects in the SCS focused on trial production engineering and geological engineering in the past 20 years,while 8 of the 10 international NGH research projects focused on resource potential.Second,resource evaluation methods are outdated and some parameter selection are subjective.Third,the existing resource evaluation results are low-level with a great uncertainty,and cannot be used to guide NGH exploration and production or strategic research.To improve the evaluation of NGH resources in the SCS,future researches should focus on four aspects:(1)improve the research on the criterion of the objective existence of NGH and the method of prediction and evaluation;(2)apply new theories and methods from the global NGH research;(3)boost the research on the difference and correlation of the conditions of hydrocarbon migration and accumulation in different basins;(4)innovate the theory and method of NGH resource potential evaluation.展开更多
The petroleum geological features of hydrocarbon source rocks in the Oriente Basin in Ecuador are studied in detail to determine the potential of shale gas resources in the basin. The favorable shale gas layer in the ...The petroleum geological features of hydrocarbon source rocks in the Oriente Basin in Ecuador are studied in detail to determine the potential of shale gas resources in the basin. The favorable shale gas layer in the vertical direction is optimized by combining logging identification and comprehensive geological analysis. The thickness in this layer is obtained by logging interpretation in the basin. The favorable shale gas accumulation area is selected by referring to thickness and depth data. Furthermore, the shale gas resource amount of the layer in the favorable area is calculated using the analogy method. Results show that among the five potential hydrocarbon source rocks, the lower Napo Formation is the most likely shale gas layer. The west and northwest zones, which are in the deep-sea slope and shelf sedimentary environments, respectively, are the favorable areas for shale gas accumulation. The favorable sedimentary environment formed thick black shale that is rich in organic matter. The black shale generated hydrocarbon, which migrated laterally to the eastern shallow water shelf to form numerous oil fields. The result of the shale gas resource in the two favorable areas,as calculated by the analogy method, is 55,500×10;m;. This finding shows the high exploration and development potential of shale gas in the basin.展开更多
Reservoir porosity is a critical parameter for the process of unconventional oil and gas resources assessment. It is difficult to determine the porosity of a gas shale reservoir, and any large deviation will directly ...Reservoir porosity is a critical parameter for the process of unconventional oil and gas resources assessment. It is difficult to determine the porosity of a gas shale reservoir, and any large deviation will directly reduce the credibility of any shale gas resources evaluation. However, there is no quantitative explanation for the accuracy of porosity measurement. In this paper, measurement uncertainty, an internationally recognized index, was used to evaluate the results of porosity measurement of gas shale plugs, and its impact on the credibility of shale gas resources assessment was determined. The following conclusions are drawn:(1) the measurement uncertainty of porosity of a shale plug is 1.76%–3.12% using current measurement methods, the upper end of which is too large to be acceptable. It is suggested that the measurement uncertainty should be factored into the standard helium gas injection porosity determination experiment, and the uncertainty should be less than 2.00% when using a high-precision pressure gauge;(2) in order to reduce the risk for exploration and decision-making, attention should be paid to the large uncertainty(30% at least) of shale gas resource assessment results, sometimes with corrections being made based on the practical considerations;(3) a pressure gauge with an accuracy of 0.25% of the full scal cannot meet the requirements of porosity measurement, and a high-precision plug cutting method or high-precision bulk volume measurement method such as one using 3 D scanning, is recommended to effectively reduce porosity uncertainty;(4) the method and process for evaluating the measurement uncertainty of gas shale porosity could also be referred for assessment of experimental quality by other laboratories.展开更多
Coal-measure gas is the natural gas generated by coal, carbonaceous shale, and dark shale in coal-measure strata. It includes resources of continuous-type coalbed methane (CBM), shale gas and tight gas reservoirs, and...Coal-measure gas is the natural gas generated by coal, carbonaceous shale, and dark shale in coal-measure strata. It includes resources of continuous-type coalbed methane (CBM), shale gas and tight gas reservoirs, and trap-type coal-bearing gas reservoirs. Huge in resources, it is an important gas source in the natural gas industry. The formation and distribution characteristics of coal-measure gas in San Juan, Surat, West Siberia and Ordos basins are introduced in this paper. By reviewing the progress of exploration and development of coal-measure gas around the world, the coal-measure gas is confirmed as an important strategic option for gas supply. This understanding is mainly manifested in three aspects. First, globally, the Eurasian east-west coal-accumulation belt and North American north-south coal-accumulation belt are two major coal-accumulation areas in the world, and the Late Carboniferous–Permian, Jurassic and end of Late Cretaceous–Neogene are 3 main coal-accumulation periods. Second, continuous-type and trap-type are two main accumulation modes of coal-measure gas;it is proposed that the area with gas generation intensity of greater than 10×10^8 m^3/km^2 is essential for the formation of large coal-measure gas field, and the CBM generated by medium- to high-rank coal is usually enriched in syncline, while CBM generated by low-rank coal is likely to accumulate when the source rock and caprock are in good configuration. Third, it is predicted that coal-measure gas around the world has huge remaining resources, coal-measure gas outside source is concentrated in Central Asia-Russia, the United States, Canada and other countries/regions, while CBM inside source is largely concentrated in 12 countries. The production of coal-measure gas in China is expected to exceed 1000×10^8 m^3 by 2030, including (500–550)×10^8 m^3 conventional coal-measure gas,(400–450)×10^8 m^3 coal-measure tight gas, and (150–200)×10^8 m^3 CBM.展开更多
There have been at least 29 groups of estimates on the global natural gas hydrate(NGH)resource since1973,varying greatly with up to 10,000 times and showing a decreasing trend with time.For the South China Sea(SCS),35...There have been at least 29 groups of estimates on the global natural gas hydrate(NGH)resource since1973,varying greatly with up to 10,000 times and showing a decreasing trend with time.For the South China Sea(SCS),35 groups of estimations were conducted on NGH resource potential since 2000,while these estimates kept almost the same with time,varying between 60 and 90 billion tons of oil equivalent(toe).What are the key factors controlling the variation trend?What are the implications of these variations for the NGH development in the world and the SCS?By analyzing the investigation characteristics of NGH resources in the world,this study divided the evaluation process into six stages and confirmed four essential factors for controlling the variations of estimates.Results indicated that the reduction trend reflects an improved understanding of the NGH formation mechanism and advancement in the resource evaluation methods,and promoted more objective evaluation results.Furthermore,the analysis process and improved evaluation method was applied to evaluate the NGH resources in the SCS,showing the similar decreasing trend of NGH resources with time.By utilizing the decreasing trend model,the predicted recoverable resources in the world and the SCS are(205-500)×10^(12)m^(3)and(0.8-6.5)×10^(12)m^(3),respectively,accounting for 20%of the total conventional oil and gas resources.Recoverable NGH resource in the SCS is only about 4%-6%of the previous estimates of 60-90 billion toe.If extracted completely,it only can support the sustainable development of China for 7 years at the current annual consumption level of oil and gas.NGH cannot be the main energy resource in future due to its low resource potential and lack of advantages in recovery.展开更多
Using conventional and unconventional oil and gas resource evaluation methods with play as a unit, this study evaluates the oil and gas geology and resource potential of conventional oil and gas resources and seven ty...Using conventional and unconventional oil and gas resource evaluation methods with play as a unit, this study evaluates the oil and gas geology and resource potential of conventional oil and gas resources and seven types of unconventional resources in the global major oil and gas basins(excluding China). For the first time, resource evaluation data with independent intellectual property rights has been obtained. According to evaluation and calculation, the global recoverable conventional oil resources are 5 350.0×108 t, the recoverable condensate oil resources are 496.2×108 t, and the recoverable natural gas resources are 588.4×1012 m3. The remaining oil and gas 2 P recoverable reserves are 4 212.6×108 t, the reserve growth of oil and gas fields are 1 531.7×108 t. The undiscovered oil and gas recoverable resources are 3 065.5×108 t. The global unconventional oil recoverable resources are 4 209.4×108 t and the unconventional natural gas recoverable resources are 195.4×1012 m3. The evaluation results show that the global conventional and unconventional oil and gas resources are still abundant.展开更多
Natural gas hydrate(NGH),considered as a type of premium energy alternative to conventional hydrocarbons,has been broadly studied.The estimate of the total NGH resources in the world has decreased by more than 90%sinc...Natural gas hydrate(NGH),considered as a type of premium energy alternative to conventional hydrocarbons,has been broadly studied.The estimate of the total NGH resources in the world has decreased by more than 90%since the first evaluation in 1973.Geographic and geophysical conditions of the South China Sea(SCS)are favorable for the formation of NGH,which has been proved by drilling results up to date.The recoverability of the NGH in the SCS has been confirmed by the production tests using both vertical and horizontal wells.Since 2001,35 estimates of NGH resources in the SCS have been made,with relatively stable results varying between 600 and 900×109 ton oil equivalent.In these estimations,the volumetric method was commonly adopted,but the geological conditions,the migration-accumulation mechanisms of NGH,and the practical recoverability were not considered.These estimates cannot be regarded as evaluated resources according to the international resource evaluation standards,but are at most about prospective gas content of NGH,thus inefficient for guiding explorations and developments.To solve these problems,this study divides the past NGH surveys in the SCS into seven stages,acquires key geological parameters of every stage based on previous studies and analogy with other areas,evaluates the NGH resources of these seven stages by using the volumetric method,then adopts a new trend-analysis method to simulate the downward trend of these estimates,and finally predicts the NGH resources in the SCS at 2025 and 2030.The downward trend is because of the continuous improvement of NGH understanding over time,which is consistent with the trend of global NGH estimates.At the present stage(from 2019 to 2021),the average technically recoverable resource(ATRR)is 7.0×10^(12)m^(3),and the estimates of 2025 and 2030 ATRR are 6.46×10^(12)m^(3) and 4.01×10^(12)m^(3)respectively,with a difference of less than 40%.Therefore,it can be inferred that the ATRR of NGH in the SCS is between 4.0 and 6.5×10^(12)m^(3),with an average of 5.25×10^(12)m^(3).展开更多
Recently abiogenic alkanes have been found in various locations in the world and other celestial bodies. The chemical composition of abiogenic alkane gases varies widely. The content of methane is low and nearly no C2...Recently abiogenic alkanes have been found in various locations in the world and other celestial bodies. The chemical composition of abiogenic alkane gases varies widely. The content of methane is low and nearly no C2+ is found in the abiogenic alkane gases from fluid inclusions in volcanic rocks or hot springs in China. In the unsedimented submarine hydrothermal vent system C1/C2+ ratios are much greater than those for the thermogenic gases, mostly >800 and in some cases up to 8,000. In the Songliao Basin, China, C1/C2+ of some abiogenic gases are often less than 150. Abiogenic alkane gases which have been found in nature often have carbon isotopic reversal among C1–C4 alkanes (δ13C1>δ13C2>δ13C3>δ13C4), whereas both regular and reversed hydrogen isotope distribution pattern among C1–C4 alkanes have been reported. The δ13C of abiogenic methane is mainly greater than ?30‰ though laboratory synthesized methane can have δ13C as low as ?57‰, and its δD1 values vary widely and overlap with biogenic gases. High 3He/4He ratios often indicate the addition of mantle-derived helium and are related to abiogenic gases. However, some biogenic gases can also have high 3He/4He ratios up to 8. The CH4/3He end-member is often lower than 106 for abiogenic alkane gases while greater than 1013 for biogenic gases, and the values between these two end-members often reflect the mixing of biogenic and abiogenic gases.展开更多
At present, most shale gas exploration and development areas in China are difficult to provide sufficient and effective production data to support economic evaluation, since they are still in the initial stage of low ...At present, most shale gas exploration and development areas in China are difficult to provide sufficient and effective production data to support economic evaluation, since they are still in the initial stage of low exploration level. In addition, ecological and environmental factors are not taken into account in the evaluation process, which does not meet the needs of green energy development of China. Aiming at above problems, the dynamic economic evaluation method of shale gas resources based on calculus principle is proposed. The Arps hyperbolic decreasing curve model will be used in the evaluation of single shale gas well production, which can evaluate single well production of shale gas by fitting the existing dynamic production data to generate the production decreasing curve. Therefore, the variation regularity of the cumulative production of single well shale gas within the study area can be obtained by the model mentioned above. According to the variation regularity of the cumulative production obtained from the Arps hyperbolic decreasing curve model, the recovery period of single well cost, ultimate economic life and the ultimate economic resource can be evaluated dynamically by analyzing the variation regularity of the cumulative sales revenue and cumulative input cost of single shale gas well. Then the evaluation result can be further extend to the whole evaluation areas, in order to analyze shale gas resources ’ economic value in evaluation regions under different shale gas price conditions. The results of the above evaluation methods are not only conducive to improving the economic benefits of relative shale gas development enterprises, but also provide a basis for the national energy strategy deployment.展开更多
基金jointly supported by the National Natural Science Foundation of China(42376222,U22A20581,and 42076069)Key Research and Development Program of Hainan Province(ZDYF2024GXJS002)China Geological Survey(DD20230402)。
文摘A detailed understanding of the distribution and potential of natural gas hydrate(NGHs)resources is crucial to fostering the industrialization of those resources in the South China Sea,where NGHs are abundant.In this study,this study analyzed the applicability of resource evaluation methods,including the volumetric,genesis,and analogy methods,and estimated NGHs resource potential in the South China Sea by using scientific resource evaluation methods based on the factors controlling the geological accumulation and the reservoir characteristics of NGHs.Furthermore,this study compared the evaluation results of NGHs resource evaluations in representative worldwise sea areas via rational analysis.The results of this study are as follows:(1)The gas hydrate accumulation in the South China Sea is characterized by multiple sources of gas supply,multi-channel migration,and extensive accumulation,which are significantly different from those of oil and gas and other unconventional resources.(2)The evaluation of gas hydrate resources in the South China Sea is a highly targeted,stratified,and multidisciplinary evaluation of geological resources under the framework of a multi-type gas hydrate resource evaluation system and focuses on the comprehensive utilization of multi-source heterogeneous data.(3)Global NGHs resources is n×10^(15)m^(3),while the NGHs resources in the South China Sea are estimated to be 10^(13)m^(3),which is comparable to the abundance of typical marine NGHs deposits in other parts of the world.In the South China Sea,the NGHs resources have a broad prospect and provide a substantial resource base for production tests and industrialization of NGHs.
基金supported by the Natural Science Research Project of Guangling College of Yangzhou University,China (ZKZD18004)General Program of Natural Science Research in Higher Education Institutions of Jiangsu Province,China (20KJD430006)。
文摘Gas flexible pipes are critical multi-layered equipment for offshore oil and gas development.Under high pressure conditions,small molecular components of natural gas dissolve into the polymer inner liner of the flexible pipes and further diffuse into the annular space,incurring annular pressure build-up and/or production of acidic environment,which poses serious challenges to the structure and integrity of the flexible pipes.Gas permeation in pipes is a complex phenomenon governed by various factors such as internal pressure and temperature,annular structure,external temperature.In a long-distance gas flexible pipe,moreover,gas permeation exhibits non-uniform features,and the gas permeated into the annular space flows along the metal gap.To assess the complex gas transport behavior in long-distance gas flexible pipes,a mathematical model is established in this paper considering the multiphase flow phenomena inside the flexible pipes,the diffusion of gas in the inner liner,and the gas seepage in the annular space under varying permeable properties of the annulus.In addition,the effect of a variable temperature is accounted.A numerical calculation method is accordingly constructed to solve the coupling mathematical equations.The annular permeability was shown to significantly influence the distribution of annular pressure.As permeability increases,the annular pressure tends to become more uniform,and the annular pressure at the wellhead rises more rapidly.After annular pressure relief followed by shut-in,the pressure increase follows a convex function.By simulating the pressure recovery pattern after pressure relief and comparing it with test results,we deduce that the annular permeability lies between 123 and 512 m D.The results help shed light upon assessing the annular pressure in long distance gas flexible pipes and thus ensure the security of gas transport in the emerging development of offshore resources.
基金supported by the projects of the China Geological Survey(DD20230043,DD20240048)the project of the National Natural Science Foundation of China(42102123)。
文摘Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential energy and mineral resources for the development of human society.They also record the evolution process of the earth and improve the understanding of the earth.This review focuses on the diagenesis and formation mechanisms of black shales sedimentation,composition,evolution,and reconstruction,which have had a significant impact on the formation and enrichment of shale oil and gas.In terms of sedimentary environment,black shales can be classified into three types:Marine,terrestrial,and marine-terrestrial transitional facies.The formation processes include mechanisms such as eolian input,hypopycnal flow,gravity-driven and offshore bottom currents.From a geological perspective,the formation of black shales is often closely related to global or regional major geological events.The enrichment of organic matter is generally the result of the interaction and coupling of several factors such as primary productivity,water redox condition,and sedimentation rate.In terms of evolution,black shales have undergone diagenetic evolution of inorganic minerals,thermal evolution of organic matter and hydrocarbon generation,interactions between organic matter and inorganic minerals,and pore evolution.In terms of reconstruction,the effects of fold deformation,uplift and erosion,and fracturing have changed the stress state of black shale reservoirs,thereby having a significant impact on the pore structure.Fluid activity promotes the formation of veins,and have changed the material composition,stress structure,and reservoir properties of black shales.Regarding resource effects,the deposition of black shales is fundamental for shale oil and gas resources,the evolution of black shales promotes the shale oil and gas formation and storage,and the reconstruction of black shales would have caused the heterogeneous distribution of oil and gas in shales.Exploring the formation mechanisms and interactions of black shales at different scales is a key to in-depth research on shale formation and evolution,as well as the key to revealing the mechanism controlling shale oil and gas accumulation.The present records can reveal how these processes worked in geological history,and improve our understanding of the coupling mechanisms among regional geological events,black shales evolution,and shale oil and gas formation and enrichment.
基金the financial support of the National Natural Science Foundation of China(42176212,41976074 and 41302034)the Marine S&T Fund of Shandong Province for Laoshan Laboratory(2021QNLM020002)the Marine Geological Survey Program(DD20221704)。
文摘The Qilian Mountain permafrost area located in the northern of Qinghai-Tibet Plateau is a favorable place for natural gas hydrate formation and enrichment,due to its well-developed fractures and abundant gas sources.Understanding the formation and distribution of multi-component gas hydrates in fractures is crucial in accurately evaluating the hydrate reservoir resources in this area.The hydrate formation experiments were carried out using the core samples drilled from hydrate-bearing sediments in Qilian Mountain permafrost area and the multi-component gas with similar composition to natural gas hydrates in Qilian Mountain permafrost area.The formation and distribution characteristics of multi-component gas hydrates in core samples were observed in situ by X-ray Computed Tomography(X-CT)under high pressure and low temperature conditions.Results show that hydrates are mainly formed and distributed in the fractures with good connectivity.The ratios of volume of hydrates formed in fractures to the volume of fractures are about 96.8%and 60.67%in two different core samples.This indicates that the fracture surface may act as a favorable reaction site for hydrate formation in core samples.Based on the field geological data and the experimental results,it is preliminarily estimated that the inventory of methane stored in the fractured gas hydrate in Qilian Mountain permafrost area is about 8.67×1013 m3,with a resource abundance of 8.67×108 m3/km2.This study demonstrates the great resource potential of fractured gas hydrate and also provides a new way to further understand the prospect of natural gas hydrate and other oil and gas resources in Qilian Mountain permafrost area.
文摘In view of the problem that a single modeling method cannot predict the distribution of microfacies, a new idea of coupling modeling method to comprehensively predict the distribution of sedimentary microfacies was proposed, breaking the tradition that different sedimentary microfacies used the same modeling method in the past. Because different sedimentary microfacies have different distribution characteristics and geometric shapes, it is more accurate to select different simulation methods for prediction. In this paper, the coupling modeling method was to establish the distribution of sedimentary microfacies with simple geometry through the point indicating process simulation, and then predict the microfacies with complex spatial distribution through the sequential indicator simulation method. Taking the DC block of Bohai basin as an example, a high-precision reservoir sedimentary microfacies model was established by the above coupling modeling method, and the model verification results showed that the sedimentary microfacies model had a high consistency with the underground. The coupling microfacies modeling method had higher accuracy and reliability than the traditional modeling method, which provided a new idea for the prediction of sedimentary microfacies.
基金Supported by the National Natural Science Foundation of China(41472120)General Project of National Natural Science Foundation of China(42272188)+1 种基金Special Fund of PetroChina and New Energy Branch(2023YQX10101)Petrochemical Joint Fund of Fund Committee(U20B6001)。
文摘Exploration and development of large gas fields is an important way for a country to rapidly develop its natural gas industry.From 1991 to 2020,China discovered 68 new large gas fields,boosting its annual gas output to 1925×108m3in 2020,making it the fourth largest gas-producing country in the world.Based on 1696 molecular components and carbon isotopic composition data of alkane gas in 70 large gas fields in China,the characteristics of carbon isotopic composition of alkane gas in large gas fields in China were obtained.The lightest and average values ofδ^(13)C_(1),δ13C2,δ13C3andδ13C4become heavier with increasing carbon number,while the heaviest values ofδ^(13)C_(1),δ13C2,δ13C3andδ13C4become lighter with increasing carbon number.Theδ^(13)C_(1)values of large gas fields in China range from-71.2‰to-11.4‰(specifically,from-71.2‰to-56.4‰for bacterial gas,from-54.4‰to-21.6‰for oil-related gas,from-49.3‰to-18.9‰for coal-derived gas,and from-35.6‰to-11.4‰for abiogenic gas).Based on these data,theδ^(13)C_(1)chart of large gas fields in China was plotted.Moreover,theδ^(13)C_(1)values of natural gas in China range from-107.1‰to-8.9‰,specifically,from-1071%o to-55.1‰for bacterial gas,from-54.4‰to-21.6‰for oil-related gas,from-49.3‰to-13.3‰for coal-derived gas,and from-36.2‰to-8.9‰for abiogenic gas.Based on these data,theδ^(13)C_(1)chart of natural gas in China was plotted.
基金supported by the State of Texas Advanced Resource Recovery(STARR)programthe Bureau of Economic Geology's Tight Oil Resource Assessment(TORA)Mudrock Systems Research Laboratory(MSRL)consortia。
文摘We present a systematic summary of the geological characteristics,exploration and development history and current state of shale oil and gas in the United States.The hydrocarbon-rich shales in the major shale basins of the United States are mainly developed in six geological periods:Middle Ordovician,Middle-Late Devonian,Early Carboniferous(Middle-Late Mississippi),Early Permian,Late Jurassic,and Late Cretaceous(Cenomanian-Turonian).Depositional environments for these shales include intra-cratonic basins,foreland basins,and passive continental margins.Paleozoic hydrocarbon-rich shales are mainly developed in six basins,including the Appalachian Basin(Utica and Marcellus shales),Anadarko Basin(Woodford Shale),Williston Basin(Bakken Shale),Arkoma Basin(Fayetteville Shale),Fort Worth Basin(Barnett Shale),and the Wolfcamp and Leonardian Spraberry/Bone Springs shale plays of the Permian Basin.The Mesozoic hydrocarbon-rich shales are mainly developed on the margins of the Gulf of Mexico Basin(Haynesville and Eagle Ford)or in various Rocky Mountain basins(Niobrara Formation,mainly in the Denver and Powder River basins).The detailed analysis of shale plays reveals that the shales are different in facies and mineral components,and"shale reservoirs"are often not shale at all.The United States is abundant in shale oil and gas,with the in-place resources exceeding 0.246×10^(12)t and 290×10^(12)m^(3),respectively.Before the emergence of horizontal well hydraulic fracturing technology to kick off the"shale revolution",the United States had experienced two decades of exploration and production practices,as well as theory and technology development.In 2007-2023,shale oil and gas production in the United States increased from approximately 11.2×10^(4)tons of oil equivalent per day(toe/d)to over 300.0×10^(4)toe/d.In 2017,the shale oil and gas production exceeded the conventional oil and gas production in the country.In 2023,the contribution from shale plays to the total U.S.oil and gas production remained above 60%.The development of shale oil and gas has largely been driven by improvements in drilling and completion technologies,with much of the recent effort focused on“cube development”or“co-development”.Other efforts to improve productivity and efficiency include refracturing,enhanced oil recovery,and drilling of“U-shaped”wells.Given the significant resources base and continued technological improvements,shale oil and gas production will continue to contribute significant volumes to total U.S.hydrocarbon production.
基金This research was financially supported by the CAS consultation project(Grant number-2019-ZW11-Z-035)the National Basic Research Program of China(973)(Projects:2006CB202300,2011CB201100)+1 种基金China High-Tech R&D(863)Program Project(2013AA092600)We would like to thank Gao Deli,Academician of Chinese Academy of Sciences,for his comments and recommendation in publishing this paper in Petroleum Science.
文摘Natural gas hydrate(NGH)has been widely considered as an alternative to conventional oil and gas resources in the future energy resource supply since Trofimuk’s first resource assessment in 1973.At least 29 global estimates have been published from various studies so far,among which 24 estimates are greater than the total conventional gas resources.If drawn in chronological order,the 29 historical resource estimates show a clear downward trend,reflecting the changes in our perception with respect to its resource potential with increasing our knowledge on the NGH with time.A time series of the 29 estimates was used to establish a statistical model for predict the future trend.The model produces an expected resource value of 41.46×1012 m3 at the year of 2050.The statistical trend projected future gas hydrate resource is only about 10%of total natural gas resource in conventional reservoir,consistent with estimates of global technically recoverable resources(TRR)in gas hydrate from Monte Carlo technique based on volumetric and material balance approaches.Considering the technical challenges and high cost in commercial production and the lack of competitive advantages compared with rapid growing unconventional and renewable resources,only those on the very top of the gas hydrate resource pyramid will be added to future energy supply.It is unlikely that the NGH will be the major energy source in the future.
基金funded by the major consulting project of“South China Sea Oil and Gas Comprehensive Development Strategy Research”led by Academician Gao Deli and the Faculty of Chinese Academy of SciencesConsulting Project of Chinese Academy of Sciences(2019-ZW11-Z-035)+1 种基金National Key Basic Research and Development Program(973)(2006CB202300,2011CB201100)China High-Tech R&D Project(863)(2013AA092600)。
文摘China Geological Survey conducted the second trial production of natural gas hydrate(NGH)in the Shenhu Area in South China Sea(SCS)from 2019 to 2020.Compared with the first trial production in 2017,the second trial showed significantly increased daily gas production and total gas production,and removed some technical obstacles for large-scale NGH resource developments in the SCS.However,current NGH resource evaluation in the SCS is still at the stage of prospective gas content assessment,which is unable to guide further NGH exploration and development.This study utilized the hydrate phase balance to delineate the NGH distribution range and effective thickness and volumetric method to evaluate NGH resource.Based on the latest exploration and production data from the Shenhu Area,Monte Carlo simulation was performed to calculate the NGH resource amount with different probabilities.By assuming a 50%cumulative probability,the in-situ NGH resources in the SCS was estimated to be11.7×10^(12)m^(3) and the recoverable NGH resources was 2.8×10^(12)m^(3).These results will provide a more reliable resource basis for China to formulate comprehensive development strategies for oil and gas exploration in the SCS.
文摘Natural gas resources in China are abundant. The undiscovered recoverable natural gas resources in China are estimated to be 19.27 ×10^12 m^3. Natural gas is mainly distributed in the middle and west China and offshore areas of China. The Tarim Basin, Sichuan Basin, Ordos Basin, East China Sea Basin, Tsaidam Basin, Yinggehai Basin, and Qiongdongnan Basin are the main gas-bearing basins. The natural gas resources are not distributed evenly and are under-explored in China. The deeper horizons in east China, foreland basins and craton paleo-uplifts in the middle and west China, and the offshore basins are the main exploration areas in the future.
基金supported by a major consulting project of"South China Sea Oil and Gas Comprehensive Development Strategy Research"led by Academician Gao Deli and the Faculty of Chinese Academy of SciencesCounsulting Project of Chinese Academy of Science(Approval Number:2019-ZW11-Z-035)+1 种基金National Key Basic Research and Development Program(973)(Nos:2006CB202300,2011CB201100)China High-tech R&D Program(863)(2013AA092600)。
文摘Natural gas hydrate(NGH)has attracted much attention as a new alternative energy globally.However,evaluations of global NGH resources in the past few decades have casted a decreasing trend,where the estimate as of today is less than one ten-thousandth of the estimate forty years ago.The NGH researches in China started relatively late,but achievements have been made in the South China Sea(SCS)in the past two decades.Thirty-five studies had been carried out to evaluate NGH resource,and results showed a flat trend,ranging from 60 to 90 billion tons of oil equivalent,which was 2-3 times of the evaluation results of technical recoverable oil and gas resources in the SCS.The big difference is that the previous 35 group of NGH resource evaluations for the SCS only refers to the prospective gas resource with low grade level and high uncertainty,which cannot be used to guide exploration or researches on development strategies.Based on the analogy with the genetic mechanism of conventional oil and gas resources,this study adopts the newly proposed genetic method and geological analogy method to evaluate the NGH resource.Results show that the conventional oil and gas resources are 346.29×10^(8)t,the volume of NGH and free dynamic field are 25.19×10^(4)km^(3) and(2.05-2.48)×10^(6)km^(3),and the total amount of in-situ NGH resources in the SCS is about(4.47-6.02)×10^(12)m^(3).It is considered that the resource of hydrate should not exceed that of conventional oil and gas,so it is 30 times lower than the previous estimate.This study provides a more reliable geological basis for further NGH exploration and development.
基金financially supported by the CAS consultation project“South China Sea Oil and Gas Comprehensive Development Strategy”(2019-ZW11-Z-035)the National Basic Research Program of China(2006CB202300,2011CB201100)the National HighTech R&D(863)Program of China(2013AA092600)。
文摘As an efficient clean energy,natural gas hydrate(NGH)has become a hot topic in recent researches.Since1990 s,China has made great achievements and progress in NGH exploration in the South China Sea(SCS),including determination of the favorable distribution areas and favorable strata thickness,identification of the dual source for accumulation,evaluation of the prospective gas contents,verification of the widespread existence,and confirmation of the technical recoverability of NGH resources.However,there are three major challenges in the NGH studies.First,all the 24 national key and major projects in the SCS focused on trial production engineering and geological engineering in the past 20 years,while 8 of the 10 international NGH research projects focused on resource potential.Second,resource evaluation methods are outdated and some parameter selection are subjective.Third,the existing resource evaluation results are low-level with a great uncertainty,and cannot be used to guide NGH exploration and production or strategic research.To improve the evaluation of NGH resources in the SCS,future researches should focus on four aspects:(1)improve the research on the criterion of the objective existence of NGH and the method of prediction and evaluation;(2)apply new theories and methods from the global NGH research;(3)boost the research on the difference and correlation of the conditions of hydrocarbon migration and accumulation in different basins;(4)innovate the theory and method of NGH resource potential evaluation.
文摘The petroleum geological features of hydrocarbon source rocks in the Oriente Basin in Ecuador are studied in detail to determine the potential of shale gas resources in the basin. The favorable shale gas layer in the vertical direction is optimized by combining logging identification and comprehensive geological analysis. The thickness in this layer is obtained by logging interpretation in the basin. The favorable shale gas accumulation area is selected by referring to thickness and depth data. Furthermore, the shale gas resource amount of the layer in the favorable area is calculated using the analogy method. Results show that among the five potential hydrocarbon source rocks, the lower Napo Formation is the most likely shale gas layer. The west and northwest zones, which are in the deep-sea slope and shelf sedimentary environments, respectively, are the favorable areas for shale gas accumulation. The favorable sedimentary environment formed thick black shale that is rich in organic matter. The black shale generated hydrocarbon, which migrated laterally to the eastern shallow water shelf to form numerous oil fields. The result of the shale gas resource in the two favorable areas,as calculated by the analogy method, is 55,500×10;m;. This finding shows the high exploration and development potential of shale gas in the basin.
基金the National Key R&D Program of China(Grant No.2017YFC0603101)the National Science and Technology Major Project of China(Grant No.2016ZX05003-002)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA1401010I,XDA14010403)the Science and Technology Programe of RIPED.PetroChina(Grant No.YGJ2019-05).
文摘Reservoir porosity is a critical parameter for the process of unconventional oil and gas resources assessment. It is difficult to determine the porosity of a gas shale reservoir, and any large deviation will directly reduce the credibility of any shale gas resources evaluation. However, there is no quantitative explanation for the accuracy of porosity measurement. In this paper, measurement uncertainty, an internationally recognized index, was used to evaluate the results of porosity measurement of gas shale plugs, and its impact on the credibility of shale gas resources assessment was determined. The following conclusions are drawn:(1) the measurement uncertainty of porosity of a shale plug is 1.76%–3.12% using current measurement methods, the upper end of which is too large to be acceptable. It is suggested that the measurement uncertainty should be factored into the standard helium gas injection porosity determination experiment, and the uncertainty should be less than 2.00% when using a high-precision pressure gauge;(2) in order to reduce the risk for exploration and decision-making, attention should be paid to the large uncertainty(30% at least) of shale gas resource assessment results, sometimes with corrections being made based on the practical considerations;(3) a pressure gauge with an accuracy of 0.25% of the full scal cannot meet the requirements of porosity measurement, and a high-precision plug cutting method or high-precision bulk volume measurement method such as one using 3 D scanning, is recommended to effectively reduce porosity uncertainty;(4) the method and process for evaluating the measurement uncertainty of gas shale porosity could also be referred for assessment of experimental quality by other laboratories.
基金Supported by the National Key Basic Research and Development Program(973 Program),China
文摘Coal-measure gas is the natural gas generated by coal, carbonaceous shale, and dark shale in coal-measure strata. It includes resources of continuous-type coalbed methane (CBM), shale gas and tight gas reservoirs, and trap-type coal-bearing gas reservoirs. Huge in resources, it is an important gas source in the natural gas industry. The formation and distribution characteristics of coal-measure gas in San Juan, Surat, West Siberia and Ordos basins are introduced in this paper. By reviewing the progress of exploration and development of coal-measure gas around the world, the coal-measure gas is confirmed as an important strategic option for gas supply. This understanding is mainly manifested in three aspects. First, globally, the Eurasian east-west coal-accumulation belt and North American north-south coal-accumulation belt are two major coal-accumulation areas in the world, and the Late Carboniferous–Permian, Jurassic and end of Late Cretaceous–Neogene are 3 main coal-accumulation periods. Second, continuous-type and trap-type are two main accumulation modes of coal-measure gas;it is proposed that the area with gas generation intensity of greater than 10×10^8 m^3/km^2 is essential for the formation of large coal-measure gas field, and the CBM generated by medium- to high-rank coal is usually enriched in syncline, while CBM generated by low-rank coal is likely to accumulate when the source rock and caprock are in good configuration. Third, it is predicted that coal-measure gas around the world has huge remaining resources, coal-measure gas outside source is concentrated in Central Asia-Russia, the United States, Canada and other countries/regions, while CBM inside source is largely concentrated in 12 countries. The production of coal-measure gas in China is expected to exceed 1000×10^8 m^3 by 2030, including (500–550)×10^8 m^3 conventional coal-measure gas,(400–450)×10^8 m^3 coal-measure tight gas, and (150–200)×10^8 m^3 CBM.
基金financially supported by the CAS consultation project(2019-ZW11-Z-035)the National Basic Research Program of China(973)(2006CB202300,2011CB201100)China High-Tech R&D(863)Program Project(2013AA092600)。
文摘There have been at least 29 groups of estimates on the global natural gas hydrate(NGH)resource since1973,varying greatly with up to 10,000 times and showing a decreasing trend with time.For the South China Sea(SCS),35 groups of estimations were conducted on NGH resource potential since 2000,while these estimates kept almost the same with time,varying between 60 and 90 billion tons of oil equivalent(toe).What are the key factors controlling the variation trend?What are the implications of these variations for the NGH development in the world and the SCS?By analyzing the investigation characteristics of NGH resources in the world,this study divided the evaluation process into six stages and confirmed four essential factors for controlling the variations of estimates.Results indicated that the reduction trend reflects an improved understanding of the NGH formation mechanism and advancement in the resource evaluation methods,and promoted more objective evaluation results.Furthermore,the analysis process and improved evaluation method was applied to evaluate the NGH resources in the SCS,showing the similar decreasing trend of NGH resources with time.By utilizing the decreasing trend model,the predicted recoverable resources in the world and the SCS are(205-500)×10^(12)m^(3)and(0.8-6.5)×10^(12)m^(3),respectively,accounting for 20%of the total conventional oil and gas resources.Recoverable NGH resource in the SCS is only about 4%-6%of the previous estimates of 60-90 billion toe.If extracted completely,it only can support the sustainable development of China for 7 years at the current annual consumption level of oil and gas.NGH cannot be the main energy resource in future due to its low resource potential and lack of advantages in recovery.
基金Supported by the China National Science and Technology Major Project(2016ZX05029-001,2016ZX05029-002,2011ZX05028)
文摘Using conventional and unconventional oil and gas resource evaluation methods with play as a unit, this study evaluates the oil and gas geology and resource potential of conventional oil and gas resources and seven types of unconventional resources in the global major oil and gas basins(excluding China). For the first time, resource evaluation data with independent intellectual property rights has been obtained. According to evaluation and calculation, the global recoverable conventional oil resources are 5 350.0×108 t, the recoverable condensate oil resources are 496.2×108 t, and the recoverable natural gas resources are 588.4×1012 m3. The remaining oil and gas 2 P recoverable reserves are 4 212.6×108 t, the reserve growth of oil and gas fields are 1 531.7×108 t. The undiscovered oil and gas recoverable resources are 3 065.5×108 t. The global unconventional oil recoverable resources are 4 209.4×108 t and the unconventional natural gas recoverable resources are 195.4×1012 m3. The evaluation results show that the global conventional and unconventional oil and gas resources are still abundant.
基金financially supported by the CAS consultation project“South China Sea Oil and Gas Comprehensive Development Strategy”(2019-ZW11-Z-035)the National Basic Research Program of China(973 Program)(2006CB202300,2011CB201100)the National High-Tech R&D Program of China(863 Program)(2013AA092600)。
文摘Natural gas hydrate(NGH),considered as a type of premium energy alternative to conventional hydrocarbons,has been broadly studied.The estimate of the total NGH resources in the world has decreased by more than 90%since the first evaluation in 1973.Geographic and geophysical conditions of the South China Sea(SCS)are favorable for the formation of NGH,which has been proved by drilling results up to date.The recoverability of the NGH in the SCS has been confirmed by the production tests using both vertical and horizontal wells.Since 2001,35 estimates of NGH resources in the SCS have been made,with relatively stable results varying between 600 and 900×109 ton oil equivalent.In these estimations,the volumetric method was commonly adopted,but the geological conditions,the migration-accumulation mechanisms of NGH,and the practical recoverability were not considered.These estimates cannot be regarded as evaluated resources according to the international resource evaluation standards,but are at most about prospective gas content of NGH,thus inefficient for guiding explorations and developments.To solve these problems,this study divides the past NGH surveys in the SCS into seven stages,acquires key geological parameters of every stage based on previous studies and analogy with other areas,evaluates the NGH resources of these seven stages by using the volumetric method,then adopts a new trend-analysis method to simulate the downward trend of these estimates,and finally predicts the NGH resources in the SCS at 2025 and 2030.The downward trend is because of the continuous improvement of NGH understanding over time,which is consistent with the trend of global NGH estimates.At the present stage(from 2019 to 2021),the average technically recoverable resource(ATRR)is 7.0×10^(12)m^(3),and the estimates of 2025 and 2030 ATRR are 6.46×10^(12)m^(3) and 4.01×10^(12)m^(3)respectively,with a difference of less than 40%.Therefore,it can be inferred that the ATRR of NGH in the SCS is between 4.0 and 6.5×10^(12)m^(3),with an average of 5.25×10^(12)m^(3).
基金supported by the China Postdoctoral Science Foundation (20070420393)China Postdoctoral Special Science Foundation (20081095)PetroChina Science and Technology Project (07-01C-01-07)
文摘Recently abiogenic alkanes have been found in various locations in the world and other celestial bodies. The chemical composition of abiogenic alkane gases varies widely. The content of methane is low and nearly no C2+ is found in the abiogenic alkane gases from fluid inclusions in volcanic rocks or hot springs in China. In the unsedimented submarine hydrothermal vent system C1/C2+ ratios are much greater than those for the thermogenic gases, mostly >800 and in some cases up to 8,000. In the Songliao Basin, China, C1/C2+ of some abiogenic gases are often less than 150. Abiogenic alkane gases which have been found in nature often have carbon isotopic reversal among C1–C4 alkanes (δ13C1>δ13C2>δ13C3>δ13C4), whereas both regular and reversed hydrogen isotope distribution pattern among C1–C4 alkanes have been reported. The δ13C of abiogenic methane is mainly greater than ?30‰ though laboratory synthesized methane can have δ13C as low as ?57‰, and its δD1 values vary widely and overlap with biogenic gases. High 3He/4He ratios often indicate the addition of mantle-derived helium and are related to abiogenic gases. However, some biogenic gases can also have high 3He/4He ratios up to 8. The CH4/3He end-member is often lower than 106 for abiogenic alkane gases while greater than 1013 for biogenic gases, and the values between these two end-members often reflect the mixing of biogenic and abiogenic gases.
文摘At present, most shale gas exploration and development areas in China are difficult to provide sufficient and effective production data to support economic evaluation, since they are still in the initial stage of low exploration level. In addition, ecological and environmental factors are not taken into account in the evaluation process, which does not meet the needs of green energy development of China. Aiming at above problems, the dynamic economic evaluation method of shale gas resources based on calculus principle is proposed. The Arps hyperbolic decreasing curve model will be used in the evaluation of single shale gas well production, which can evaluate single well production of shale gas by fitting the existing dynamic production data to generate the production decreasing curve. Therefore, the variation regularity of the cumulative production of single well shale gas within the study area can be obtained by the model mentioned above. According to the variation regularity of the cumulative production obtained from the Arps hyperbolic decreasing curve model, the recovery period of single well cost, ultimate economic life and the ultimate economic resource can be evaluated dynamically by analyzing the variation regularity of the cumulative sales revenue and cumulative input cost of single shale gas well. Then the evaluation result can be further extend to the whole evaluation areas, in order to analyze shale gas resources ’ economic value in evaluation regions under different shale gas price conditions. The results of the above evaluation methods are not only conducive to improving the economic benefits of relative shale gas development enterprises, but also provide a basis for the national energy strategy deployment.