Humic acid(HA) is a readily available and low-cost material that is used to enhance crop production and reduce nitrogen(N) loss. However, there is little consensus on the efficacy of different HA components. In the cu...Humic acid(HA) is a readily available and low-cost material that is used to enhance crop production and reduce nitrogen(N) loss. However, there is little consensus on the efficacy of different HA components. In the current study, a soil column experiment was conducted using the ^(15)N tracer technique in Dezhou City, Shandong Province, China, to compare the effects of urea with and without the addition of weathered coal-derived HA components on maize yield and the fate of fertilizerderived N(fertilizer N). The HA components were incorporated into urea by blending different HA components into molten urea to obtain the three different types of HA-enhanced urea(HAU). At harvest, the aboveground dry biomass of plants grown with HAU was enhanced by 11.50–21.33% when compared to that of plants grown with U. More significantly, the grain yields under the HAU treatments were 5.58–18.67% higher than the yield under the urea treatment. These higher yields were due to an increase in the number of kernels per plant rather than the weight of individual kernels. The uptake of fertilizer N under the HAU treatments was also higher than that under the urea treatment by 11.49–29.46%, while the unaccounted N loss decreased by 12.37–30.05%. More fertilizer-derived N was retained in the 0–30 cm soil layer under the HAU treatments than that under the urea treatment, while less N was retained in the 30–90 cm soil layer. The total residual amount of fertilizer N in the soil column, however, did not differ significantly between the treatments. Of the three HAU treatments investigated, the one with an HA fraction derived from extraction with pH values ranging from 6 to 7, resulted in the best improvement in all assessment targets. This is likely due to the abundance of the COO/C–N=O group in this HA component.展开更多
Three field experiments were carried out during 2017-2019 at the University of Guelph Huron Research Station near Exeter, Ontario, Canada to determine the effect of halosulfuron rate (25, 37.5 or 50 g<span style=&q...Three field experiments were carried out during 2017-2019 at the University of Guelph Huron Research Station near Exeter, Ontario, Canada to determine the effect of halosulfuron rate (25, 37.5 or 50 g<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ai<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ha<sup>-1</sup>) and application timing (POST 1, POST 2 and POST 3) on volunteer azuki bean control in white bean. At POST 1, halosulfuron at 25, 37.5 and 50 g<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ai<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ha<sup>-1</sup> controlled volunteer azuki bean 46% - 50% at 1 week after application (WAA), controlled decreased to 16% - 25% at 8 WAA. At POST 2, volunteer azuki bean controlled decreased from 34% - 39% at 1 WAA to 17% - 27% at 8 WAA. A similar trend was observed at POST 3. Halosulfuron applied POST 1 at 25, 37.5 and 50 g<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ai<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ha<sup>-1</sup> reduced biomass 49%, 64% and 69%, respectively. Halosulfuron applied POST 2 did not reduce volunteer azuki bean biomass at 25 g<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ai<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ha<sup>-1</sup>, but decreased biomass 51% at 37.5 g<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ai<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ha<sup>-1</sup> and 49% at 50 g<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ai<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ha<sup>-1</sup>. Similarly, halosulfuron applied POST 3 did not reduce volunteer azuki bean biomass at 25 g<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ai<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ha<sup>-1</sup>, but decreased biomass 40% at 37.5 g<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ai<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ha<sup>-1</sup> and 44% at 50 g<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ai<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ha<sup>-1</sup>. There was as much as 19%, 22% and 25% dockage with halosulfuron applied POST 1, POST 2 and POST 3, respectively. Volunteer azuki bean interference reduced white bean yield 40%. Reduced volunteer azuki bean interference with halosulfuron applied POST 1 at 37.5 or 50 g<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ai<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ha<sup>-1</sup> resulted in an increase in white bean yield relative to the weedy control;however white yield was less than the weed-free control. This study concludes that halosulfuron at rates and application timings evaluated does not provide adequate control of volunteer azuki bean in white bean.展开更多
The aim of this study was to assess Acacia senegal trees’ characteristics as well as evaluate the carbon stock under a variety of ages in the El Demokeya forest in Sudan, where the Gum Arabic belt is located. 12 samp...The aim of this study was to assess Acacia senegal trees’ characteristics as well as evaluate the carbon stock under a variety of ages in the El Demokeya forest in Sudan, where the Gum Arabic belt is located. 12 sample plots, in 2021 were randomly distributed to represent the entire area of the forest prior to the required measurements. The sample was designed as squire plots with one hectare. In each sample plot, all trees were counted, their height (m), and Diameters Breast Height (DBH in cm), respectively. The results showed the highest number of trees per ha at age 20 years old and the lowest number at age 47 years, while the highest values of DBH and volume were found at age 47 years old. As a result, the maximum and minimum values of the aboveground biomass were found in the age 47 years old and 16 years, accounting for 19.87 tons and 1.9 tons respectively. Thus, the amount of carbon stock was 11.92 tons/ha in the 35-years-old and 1.19 tons/ha in the 21-year stands. Furthermore, the average carbon stock in all plots was estimated as 18.70 tons/ha and hence the total carbon stock in the El Demokeya forest is equal to 620.11 tons. Conclusively, the characteristics of trees, amount of aboveground biomass and carbon stock in the El Demokeya forest varied among the uneven-aged plantation groups. The study recommends and encourages the protection of A. senegal in order to increase the carbon sink as well as protect the environment in the era of climatic changes.展开更多
基金supported by the National Natural Science Foundation of China (31601827)the National Key Research and Development Program of China (2016YFD0200402)
文摘Humic acid(HA) is a readily available and low-cost material that is used to enhance crop production and reduce nitrogen(N) loss. However, there is little consensus on the efficacy of different HA components. In the current study, a soil column experiment was conducted using the ^(15)N tracer technique in Dezhou City, Shandong Province, China, to compare the effects of urea with and without the addition of weathered coal-derived HA components on maize yield and the fate of fertilizerderived N(fertilizer N). The HA components were incorporated into urea by blending different HA components into molten urea to obtain the three different types of HA-enhanced urea(HAU). At harvest, the aboveground dry biomass of plants grown with HAU was enhanced by 11.50–21.33% when compared to that of plants grown with U. More significantly, the grain yields under the HAU treatments were 5.58–18.67% higher than the yield under the urea treatment. These higher yields were due to an increase in the number of kernels per plant rather than the weight of individual kernels. The uptake of fertilizer N under the HAU treatments was also higher than that under the urea treatment by 11.49–29.46%, while the unaccounted N loss decreased by 12.37–30.05%. More fertilizer-derived N was retained in the 0–30 cm soil layer under the HAU treatments than that under the urea treatment, while less N was retained in the 30–90 cm soil layer. The total residual amount of fertilizer N in the soil column, however, did not differ significantly between the treatments. Of the three HAU treatments investigated, the one with an HA fraction derived from extraction with pH values ranging from 6 to 7, resulted in the best improvement in all assessment targets. This is likely due to the abundance of the COO/C–N=O group in this HA component.
文摘Three field experiments were carried out during 2017-2019 at the University of Guelph Huron Research Station near Exeter, Ontario, Canada to determine the effect of halosulfuron rate (25, 37.5 or 50 g<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ai<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ha<sup>-1</sup>) and application timing (POST 1, POST 2 and POST 3) on volunteer azuki bean control in white bean. At POST 1, halosulfuron at 25, 37.5 and 50 g<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ai<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ha<sup>-1</sup> controlled volunteer azuki bean 46% - 50% at 1 week after application (WAA), controlled decreased to 16% - 25% at 8 WAA. At POST 2, volunteer azuki bean controlled decreased from 34% - 39% at 1 WAA to 17% - 27% at 8 WAA. A similar trend was observed at POST 3. Halosulfuron applied POST 1 at 25, 37.5 and 50 g<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ai<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ha<sup>-1</sup> reduced biomass 49%, 64% and 69%, respectively. Halosulfuron applied POST 2 did not reduce volunteer azuki bean biomass at 25 g<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ai<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ha<sup>-1</sup>, but decreased biomass 51% at 37.5 g<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ai<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ha<sup>-1</sup> and 49% at 50 g<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ai<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ha<sup>-1</sup>. Similarly, halosulfuron applied POST 3 did not reduce volunteer azuki bean biomass at 25 g<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ai<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ha<sup>-1</sup>, but decreased biomass 40% at 37.5 g<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ai<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ha<sup>-1</sup> and 44% at 50 g<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ai<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ha<sup>-1</sup>. There was as much as 19%, 22% and 25% dockage with halosulfuron applied POST 1, POST 2 and POST 3, respectively. Volunteer azuki bean interference reduced white bean yield 40%. Reduced volunteer azuki bean interference with halosulfuron applied POST 1 at 37.5 or 50 g<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ai<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>ha<sup>-1</sup> resulted in an increase in white bean yield relative to the weedy control;however white yield was less than the weed-free control. This study concludes that halosulfuron at rates and application timings evaluated does not provide adequate control of volunteer azuki bean in white bean.
文摘The aim of this study was to assess Acacia senegal trees’ characteristics as well as evaluate the carbon stock under a variety of ages in the El Demokeya forest in Sudan, where the Gum Arabic belt is located. 12 sample plots, in 2021 were randomly distributed to represent the entire area of the forest prior to the required measurements. The sample was designed as squire plots with one hectare. In each sample plot, all trees were counted, their height (m), and Diameters Breast Height (DBH in cm), respectively. The results showed the highest number of trees per ha at age 20 years old and the lowest number at age 47 years, while the highest values of DBH and volume were found at age 47 years old. As a result, the maximum and minimum values of the aboveground biomass were found in the age 47 years old and 16 years, accounting for 19.87 tons and 1.9 tons respectively. Thus, the amount of carbon stock was 11.92 tons/ha in the 35-years-old and 1.19 tons/ha in the 21-year stands. Furthermore, the average carbon stock in all plots was estimated as 18.70 tons/ha and hence the total carbon stock in the El Demokeya forest is equal to 620.11 tons. Conclusively, the characteristics of trees, amount of aboveground biomass and carbon stock in the El Demokeya forest varied among the uneven-aged plantation groups. The study recommends and encourages the protection of A. senegal in order to increase the carbon sink as well as protect the environment in the era of climatic changes.