Current ecosystem models used to simulate global terrestrial carbon balance generally suggest that terrestrial landscapes are stable and mature,but terrestrial net primary productivity(NPP)data estimated without accou...Current ecosystem models used to simulate global terrestrial carbon balance generally suggest that terrestrial landscapes are stable and mature,but terrestrial net primary productivity(NPP)data estimated without accounting for disturbances in species composition,environment,structure,and ecological characteristics will reduce the accuracy of the global carbon budget.Therefore,the steady-state assumption and neglect of elevation-related changes in forest NPP is a concern.The Qilian Mountains are located in continental climate zone,and vegetation is highly sensitive to climate change.We quantified aboveground biomass(AGB)and aboveground net primary productivity(ANPP)sequences at three elevations using field-collected tree rings of Picea crassifolia in Qilian Mountains of Northwest China.The results showed that(1)There were significant differences between AGB and ANPP at the three elevations,and the growth rate of AGB was the highest at the low elevation(55.99 t ha^(–1)10a^(–1)).(2)There are differences in the response relationship between the ANPP and climate factors at the three elevations,and drought stress is the main climate signal affecting the change of ANPP.(3)Under the future climate scenario,drought stress intensifies,and the predicted decline trend of ANPP at the three elevations from mid-century to the end of this century is–0.025 t ha^(–1)10a^(–1),respectively;–0.022 t ha^(–1)10a^(–1);At–0.246 t ha^(–1)10a^(–1),the level of forest productivity was significantly degraded.The results reveal the elevation gradient differences in forest productivity levels and provide key information for studying the carbon sink potential of boreal forests.展开更多
Aims Identifying the amount of production and the partitioning to above-and belowground biomass is generally the first step toward select-ing bioenergy systems.There are very few existing studies on the dynamics of pr...Aims Identifying the amount of production and the partitioning to above-and belowground biomass is generally the first step toward select-ing bioenergy systems.There are very few existing studies on the dynamics of production following land conversion.The objectives of this study were to(i)determine the differences in aboveground net primary production(ANPP),belowground net primary produc-tion(BNPP),shoot-to-root ratio(S:R)and leaf area index in three bioenergy crop systems and(ii)evaluate the production of these three systems in two different land use conversions.Methods This investigation included biometric analysis of NPP on three agri-cultural sites converted from conservation reserve program(CRP)management to bioenergy crop production(corn,switchgrass and prairie mix)and three sites converted from traditional agriculture production to bioenergy crop production.Important findings The site converted from conventional agriculture produced smaller ANPP in corn(19.03±1.90 standard error[SE]Mg ha^(−1) year^(−1))than the site converted from CRP to corn(24.54±1.43 SE Mg ha^(−1) year^(−1)).The two land conversions were similar in terms of ANPP for switchgrass(4.88±0.43 SE for CRP and 2.04±0.23 SE Mg ha^(−1) year^(−1) for agriculture)and ANPP for prairie mix(4.70±0.50 SE for CRP and 3.38±0.33 SE Mg ha^(−1) year^(−1) for agriculture).The BNPP at the end of the growing season in all the bioenergy crop systems was not significantly different(P=0.75,N=8).展开更多
The main purpose of this study was to examine the effects of plant species diversity and functional composition (the identity of the plant functional groups) on ecosystem stability of Stipa, communities in the Inner M...The main purpose of this study was to examine the effects of plant species diversity and functional composition (the identity of the plant functional groups) on ecosystem stability of Stipa, communities in the Inner Mongolia Plateau. The research work was based on a 12-year study (from 1984 to 1995) of species abundance, diversity, and primary productivity of four Stipa communities, i.e. S. baicalensis Roshev., S. grandis P. Smirn., S, krylovii Roshev., and S. klemenzii Roshev. respectively. The Shnnon-Wiener index was used as a measurement of plant diversity, while functional composition was used to differentiate the functional groups that were included in the communities. The plant species of four Stipa communities were classified into functional groups based on the differences in life forms and ecological groups, which influence their performance in resource requirements, seasonality of growth, tolerance to water stress, and life history. Plant species were classified into five functional groups based on their differences in life form, shrubs and half shrubs, perennial bunch grasses, perennial rhizome grasses, forbs, annuals and biennials. Based on their differences in water requirement these species were classified into four functional groups: xerads, intermediate xerads, intermediate mesophytes, and mesophytes. The results showed: 1) Plant species diversity stabilized ecosystem processes. Shannon-Wiener index were 2.401 4, 2.172 0, 1.624 8, 0.354 3 from S. baicalensis community to S. grandis, S. krylovii and S. klemenzii community, respectively. The dynamics of the aboveground net primary productivity (ANPP) for a 12-year's period showed a reverse pattern, the coefficients of variation of the four communities were 21.94%, 20.63%, 29.21% and 39.72% respectively. 2) The Life form functional group component of diversity was a greater determinant of the ecosystem processes than the species component of diversity. The effects of perennial bunch grasses, perennial rhizome grasses and forbs on community stability were highly significant. 3) The ecological group component of diversity was also a great determinant of the ecosystem processes. The effects of xerads, intermediate xerads, and mesophytes on community stability were also very strong.展开更多
Aims Mesic grasslands have a long evolutionary history of grazing by large herbivores and as a consequence,grassland species have numerous adaptations allowing them to respond favourably to grazing.Although empirical ...Aims Mesic grasslands have a long evolutionary history of grazing by large herbivores and as a consequence,grassland species have numerous adaptations allowing them to respond favourably to grazing.Although empirical evidence has been equivocal,theory predicts that such adaptations combined with alterations in resources can lead to grazing-induced overcompensation in aboveground net primary production(ANPP;grazed ANPP>ungrazed ANPP)under certain conditions.We tested two specific predictions from theory.First,overcompensation is more likely to occur in annually burned grasslands because limiting nutrients that would be lost with frequent fires are recycled through grazers and stimulate ANPP.Second,overcompensation of biomass lost to grazers is more likely to occur in unburned sites where grazing has the greatest effect on increasing light availability through alterations in canopy structure.Methods We tested these nutrient versus light-based predictions in grazed grasslands that had been annually burned or protected from fire for>20 years.We assessed responses in ANPP to grazing by large ungulates using both permanent and moveable grazing exclosures(252 exclosures from which biomass was harvested from 3192 quadrats)in a 2-year study.Study sites were located at the Konza Prairie Biological Station(KPBS)in North America and at Kruger National Park(KNP)in South Africa.At KPBS,sites were grazed by North American bison whereas in KNP sites were grazed either by a diverse suite of herbivores(e.g.blue wildebeest,Burchell’s zebra,African buffalo)or by a single large ungulate(African buffalo).Important Findings We found no evidence for overcompensation in either burned or unburned sites,regardless of grazer type.Thus,there was no support for either mechanism leading to overcompensation.Instead,complete compensation of total biomass lost to grazers was the most common response characterizing grazing–ANPP relationships with,in some cases,undercompensation of grass ANPP being offset by increased ANPP of forbs likely due to competitive release.The capability of these very different grass-dominated systems to maintain ANPP while being grazed has important implications for energy flow,ecosystem function and the trophic dynamics of grasslands.展开更多
Assessing plant community traits is important for understanding how terrestrial ecosystems respond and adapt to global climate change.Field hyperspectral remote sensing is effective for quantitatively estimating veget...Assessing plant community traits is important for understanding how terrestrial ecosystems respond and adapt to global climate change.Field hyperspectral remote sensing is effective for quantitatively estimating vegetation properties in most terrestrial ecosystems,although it remains to be tested in areas with dwarf and sparse vegetation,such as the Tibetan Plateau.We measured canopy reflectance in the Tibetan Plateau using a handheld imaging spectrometer and conducted plant community investigations along an alpine grassland transect.We estimated community structural and functional traits,as well as community function based on a field survey and laboratory analysis using 14 spectral vegetation indices(VIs)derived from hyperspectral images.We quantified the contributions of environmental drivers,VIs,and community traits to community function by structural equation modelling(SEM).Univariate linear regression analysis showed that plant community traits are best predicted by the normalized difference vegetation index,enhanced vegetation index,and simple ratio.Structural equation modelling showed that VIs and community traits positively affected community function,whereas environmental drivers and specific leaf area had the opposite effect.Additionally,VIs integrated with environmental drivers were indirectly linked to community function by characterizing the variations in community structural and functional traits.This study demonstrates that community-level spectral reflectance will help scale plant trait information measured at the leaf level to larger-scale ecological processes.Field imaging spectroscopy represents a promising tool to predict the responses of alpine grassland communities to climate change.展开更多
Aims Water and nitrogen(N)are two key resources in dryland ecosystems,but they may have complex interactive effects on the community structure and ecosystem functions.How future precipitation(rainfall vs snowfall)chan...Aims Water and nitrogen(N)are two key resources in dryland ecosystems,but they may have complex interactive effects on the community structure and ecosystem functions.How future precipitation(rainfall vs snowfall)change will impact aboveground net primary production(ANPP)is far from clear,especially when combined with increasing N availability.Methods In this study,we investigated changes in community productivity,abundance and aboveground biomass of two dominant plant functional groups(PFGs),i.e.perennial rhizome grasses(PR)and perennial bunchgrasses(PB)under the impacts of increased precipitation(rainfall vs snowfall)combined with N addition in a semiarid temperate steppe.Important Findings Summer rainfall augmentation marginally increased community ANPP,whereas it significantly increased the abundance and aboveground biomass of PR,but not those of PB.Summer rainfall addition increased the fraction of PR biomass(fPR)while decreased that of PB(fPB).Spring snow addition had no effect on aboveground biomass of either compositional PFG although it marginally increased community ANPP.Nitrogen addition significantly increased community ANPP with greater increase in PR under summer rainfall addition,indicating strong interactive effects on community ANPP largely by enhancing PR biomass.We also found a nonlinear increase in the positive effect of nitrogen addition on productivity with the increased precipitation amount.These findings indicate an amplified impact of precipitation increase on grassland productivity under the accelerated atmospheric N deposition in the future.展开更多
Aims Understanding carbon(C)and nitrogen(N)dynamics and their dependence on the stand density of an even-aged,mature forest provides knowledge that is important for forest management.This study investigated the differ...Aims Understanding carbon(C)and nitrogen(N)dynamics and their dependence on the stand density of an even-aged,mature forest provides knowledge that is important for forest management.This study investigated the differences in ecosystem total C and N storage and flux between a low-density stand(LD)and a high-density stand(HD)and examined the effects of stand density on aboveground net primary productivity(ANPP),total belowground C allocation(TBCA)and net ecosystem production(NEP)in a naturally regenerated,65-to 75-year-old Pinus densiflora S.et Z.forest.Methods LD(450 trees ha^(−1))and HD(842 trees ha^(−1))were established in an even-aged,mature P.densiflora forest in September 2006.The forest had been naturally regenerated following harvesting,and the stand density was naturally maintained without any artificial management such as thinning.The diameter at breast height(DBH≥5.0cm)of all live stems within the stands was measured yearly from 2007 to 2011.To compare C and N storage and fluxes in LD and HD,C and N pools in aboveground and belowground biomass,the forest floor,coarse woody debris(CWD)and soil;soil CO_(2) efflux(R_(S));autotrophic respiration(R_(A));litter production;and soil N availability were measured.Further,ANPP,TBCA and NEP were estimated from plot-based measurement data.Important Findings Ecosystem C(Mg C ha^(−1))and N(Mg N ha^(−1))storage was,respectively,173.0±7.3(mean±SE)and 4.69±0.30 for LD and 162±11.8 and 4.08±0.18 for HD.There were no significant differences in C and N storage in the ecosystem components,except for soils,between the two stands.In contrast,there were significant differences in aboveground ANPP and TBCA between the two stands(P<0.05).Litterfall,biomass increment and R_(S) were major C flux components with values of,respectively,3.89,3.74 and 9.07 Mg C ha^(−1) year^(−1) in LD and 3.15,2.94 and 7.06 Mg C ha^(−1) year^(−1) in HD.Biometric-based NEP(Mg C ha^(−1) year^(−1))was 4.18 in LD and 5.50 in HD.Although the even-aged,mature P.densiflora forest had similar C and N allocation patterns,it showed different C and N dynamics depending on stand density.The results of the current study will be useful for elucidating the effects of stand density on C and N storage and fluxes,which are important issues in managing natural mature forest ecosystems.展开更多
Aims Seasonal variations in species richness,aboveground net primary productivity(ANPP)and stability under resource enrichment are frequently ignored.This study explores how the impacts of resource enrichment on speci...Aims Seasonal variations in species richness,aboveground net primary productivity(ANPP)and stability under resource enrichment are frequently ignored.This study explores how the impacts of resource enrichment on species richness,ANPP and stability vary among seasons in semi-arid grasslands.Methods We conducted a 3-year experiment in an Inner Mongolia grassland to determine the effects of resource input(water[W],nitrogen[N])on species richness,community ANPP and stability using seasonal sampling during the growing season(2013–2015).Structural equation modeling(SEM)was used to examine the relative importance of resource input on community stability via mechanistic pathways in each month and the whole growing season.Important Findings Resource inputs did not affect community ANPP in May and June,while N and/or NW enhanced ANPP in July and August.Resource inputs generally did not affect species richness,asynchrony or community stability in most of the time.Positive responses of perennial bunchgrasses(PB)to N and/or NW treatments contributed to the increased community ANPP in July and August.Species asynchrony may be the major mechanism contributing to community stability in May and June and the entire growing season,and PB stability is potentially the primary factor controlling community stability in July and August under resource enrichment.Our results indicate that season and resource availability could interact to regulate species richness,community ANPP and stability in semi-arid grasslands.These findings have important implications for management practices in semi-arid grasslands in order to mitigate the impact of land use and global change.展开更多
While recent studies have shown the importance of intraspecific trait variation in the processes of community assembly,we still know little about the contributions of intraspecific trait variability to ecosystem funct...While recent studies have shown the importance of intraspecific trait variation in the processes of community assembly,we still know little about the contributions of intraspecific trait variability to ecosystem functions.Here,we conducted a functional group removal experiment in an alpine meadow in Qinghai-Tibetan Plateau over 4 years to investigate the relative importance of inter-and intraspecific variability in plant height for productivity.We split total variability in plant height within each of 75 manipulated communities into interspecific variability(TV_(inter))and intraspecific variability within a community(ITV_(within)).Community-weighted mean height among communities was decomposed into fixed community-weighted mean(CWM_(fixed))and intraspecific variability among communities(ITV_(among)).We constructed a series of generalized additive mixed models and piecewise structural equation modeling to determine how trait variability(i.e.TV_(inter),ITV_(within),CWM_(fixed) and ITV_(among))indirectly mediated the changes in productivity in response to functional group removal.Community productivity was not only affected directly by treatment manipulations,but also increased with both inter-and intraspecific variability(i.e.CWM_(fixed) and ITV_(among))in plant height indirectly.This suggests that both the‘selection effect’and a‘shade-avoidance syndrome’can incur higher CWM_(fixed) and ITV_(among),and may simultaneously operate to regulate productivity.Our findings provide new evidence that,besides interspecific variability,intraspecific trait variability in plant height also plays a role in maintaining net primary productivity.展开更多
基金The CAS“Light of West China”Program,No.2020XBZG-XBQNXZ-ACultivation Program of 2022 Major Scientific Research Project of Northwest Normal University,No.WNU-LKZD2022-04National Natural Science Foundation of Gansu,No.20JR10RA093。
文摘Current ecosystem models used to simulate global terrestrial carbon balance generally suggest that terrestrial landscapes are stable and mature,but terrestrial net primary productivity(NPP)data estimated without accounting for disturbances in species composition,environment,structure,and ecological characteristics will reduce the accuracy of the global carbon budget.Therefore,the steady-state assumption and neglect of elevation-related changes in forest NPP is a concern.The Qilian Mountains are located in continental climate zone,and vegetation is highly sensitive to climate change.We quantified aboveground biomass(AGB)and aboveground net primary productivity(ANPP)sequences at three elevations using field-collected tree rings of Picea crassifolia in Qilian Mountains of Northwest China.The results showed that(1)There were significant differences between AGB and ANPP at the three elevations,and the growth rate of AGB was the highest at the low elevation(55.99 t ha^(–1)10a^(–1)).(2)There are differences in the response relationship between the ANPP and climate factors at the three elevations,and drought stress is the main climate signal affecting the change of ANPP.(3)Under the future climate scenario,drought stress intensifies,and the predicted decline trend of ANPP at the three elevations from mid-century to the end of this century is–0.025 t ha^(–1)10a^(–1),respectively;–0.022 t ha^(–1)10a^(–1);At–0.246 t ha^(–1)10a^(–1),the level of forest productivity was significantly degraded.The results reveal the elevation gradient differences in forest productivity levels and provide key information for studying the carbon sink potential of boreal forests.
基金United States Department of Energy’s Great Lakes Bioenergy Research Center(DOE Office of Science,BER DE-FC02-0764494).
文摘Aims Identifying the amount of production and the partitioning to above-and belowground biomass is generally the first step toward select-ing bioenergy systems.There are very few existing studies on the dynamics of production following land conversion.The objectives of this study were to(i)determine the differences in aboveground net primary production(ANPP),belowground net primary produc-tion(BNPP),shoot-to-root ratio(S:R)and leaf area index in three bioenergy crop systems and(ii)evaluate the production of these three systems in two different land use conversions.Methods This investigation included biometric analysis of NPP on three agri-cultural sites converted from conservation reserve program(CRP)management to bioenergy crop production(corn,switchgrass and prairie mix)and three sites converted from traditional agriculture production to bioenergy crop production.Important findings The site converted from conventional agriculture produced smaller ANPP in corn(19.03±1.90 standard error[SE]Mg ha^(−1) year^(−1))than the site converted from CRP to corn(24.54±1.43 SE Mg ha^(−1) year^(−1)).The two land conversions were similar in terms of ANPP for switchgrass(4.88±0.43 SE for CRP and 2.04±0.23 SE Mg ha^(−1) year^(−1) for agriculture)and ANPP for prairie mix(4.70±0.50 SE for CRP and 3.38±0.33 SE Mg ha^(−1) year^(−1) for agriculture).The BNPP at the end of the growing season in all the bioenergy crop systems was not significantly different(P=0.75,N=8).
文摘The main purpose of this study was to examine the effects of plant species diversity and functional composition (the identity of the plant functional groups) on ecosystem stability of Stipa, communities in the Inner Mongolia Plateau. The research work was based on a 12-year study (from 1984 to 1995) of species abundance, diversity, and primary productivity of four Stipa communities, i.e. S. baicalensis Roshev., S. grandis P. Smirn., S, krylovii Roshev., and S. klemenzii Roshev. respectively. The Shnnon-Wiener index was used as a measurement of plant diversity, while functional composition was used to differentiate the functional groups that were included in the communities. The plant species of four Stipa communities were classified into functional groups based on the differences in life forms and ecological groups, which influence their performance in resource requirements, seasonality of growth, tolerance to water stress, and life history. Plant species were classified into five functional groups based on their differences in life form, shrubs and half shrubs, perennial bunch grasses, perennial rhizome grasses, forbs, annuals and biennials. Based on their differences in water requirement these species were classified into four functional groups: xerads, intermediate xerads, intermediate mesophytes, and mesophytes. The results showed: 1) Plant species diversity stabilized ecosystem processes. Shannon-Wiener index were 2.401 4, 2.172 0, 1.624 8, 0.354 3 from S. baicalensis community to S. grandis, S. krylovii and S. klemenzii community, respectively. The dynamics of the aboveground net primary productivity (ANPP) for a 12-year's period showed a reverse pattern, the coefficients of variation of the four communities were 21.94%, 20.63%, 29.21% and 39.72% respectively. 2) The Life form functional group component of diversity was a greater determinant of the ecosystem processes than the species component of diversity. The effects of perennial bunch grasses, perennial rhizome grasses and forbs on community stability were highly significant. 3) The ecological group component of diversity was also a great determinant of the ecosystem processes. The effects of xerads, intermediate xerads, and mesophytes on community stability were also very strong.
基金US National Science Foundation Ecosystem Studies,Long-term Ecological Research and Research Experiences for Undergraduates Programs.
文摘Aims Mesic grasslands have a long evolutionary history of grazing by large herbivores and as a consequence,grassland species have numerous adaptations allowing them to respond favourably to grazing.Although empirical evidence has been equivocal,theory predicts that such adaptations combined with alterations in resources can lead to grazing-induced overcompensation in aboveground net primary production(ANPP;grazed ANPP>ungrazed ANPP)under certain conditions.We tested two specific predictions from theory.First,overcompensation is more likely to occur in annually burned grasslands because limiting nutrients that would be lost with frequent fires are recycled through grazers and stimulate ANPP.Second,overcompensation of biomass lost to grazers is more likely to occur in unburned sites where grazing has the greatest effect on increasing light availability through alterations in canopy structure.Methods We tested these nutrient versus light-based predictions in grazed grasslands that had been annually burned or protected from fire for>20 years.We assessed responses in ANPP to grazing by large ungulates using both permanent and moveable grazing exclosures(252 exclosures from which biomass was harvested from 3192 quadrats)in a 2-year study.Study sites were located at the Konza Prairie Biological Station(KPBS)in North America and at Kruger National Park(KNP)in South Africa.At KPBS,sites were grazed by North American bison whereas in KNP sites were grazed either by a diverse suite of herbivores(e.g.blue wildebeest,Burchell’s zebra,African buffalo)or by a single large ungulate(African buffalo).Important Findings We found no evidence for overcompensation in either burned or unburned sites,regardless of grazer type.Thus,there was no support for either mechanism leading to overcompensation.Instead,complete compensation of total biomass lost to grazers was the most common response characterizing grazing–ANPP relationships with,in some cases,undercompensation of grass ANPP being offset by increased ANPP of forbs likely due to competitive release.The capability of these very different grass-dominated systems to maintain ANPP while being grazed has important implications for energy flow,ecosystem function and the trophic dynamics of grasslands.
基金This work wassupported by the Second Tibetan Plateau ScientificExpedition and Research(STEP)program(2019QZKK0106)the Strategic Priority Research Program of Chinese Academy of Sciences(XDA26020103)Fengyun Application Pioneering Project(FY-APP-2021.0401).
文摘Assessing plant community traits is important for understanding how terrestrial ecosystems respond and adapt to global climate change.Field hyperspectral remote sensing is effective for quantitatively estimating vegetation properties in most terrestrial ecosystems,although it remains to be tested in areas with dwarf and sparse vegetation,such as the Tibetan Plateau.We measured canopy reflectance in the Tibetan Plateau using a handheld imaging spectrometer and conducted plant community investigations along an alpine grassland transect.We estimated community structural and functional traits,as well as community function based on a field survey and laboratory analysis using 14 spectral vegetation indices(VIs)derived from hyperspectral images.We quantified the contributions of environmental drivers,VIs,and community traits to community function by structural equation modelling(SEM).Univariate linear regression analysis showed that plant community traits are best predicted by the normalized difference vegetation index,enhanced vegetation index,and simple ratio.Structural equation modelling showed that VIs and community traits positively affected community function,whereas environmental drivers and specific leaf area had the opposite effect.Additionally,VIs integrated with environmental drivers were indirectly linked to community function by characterizing the variations in community structural and functional traits.This study demonstrates that community-level spectral reflectance will help scale plant trait information measured at the leaf level to larger-scale ecological processes.Field imaging spectroscopy represents a promising tool to predict the responses of alpine grassland communities to climate change.
基金X.Z.was supported by Youth Program of the National Natural Science Foundation of China(31800381)This study was financially supported by projects from the National Natural Science Foundation of China(32071562)a Strategic Priority Research Programon Soil and Microbes of the Chinese Academy of Sciences(XDB15010401).
文摘Aims Water and nitrogen(N)are two key resources in dryland ecosystems,but they may have complex interactive effects on the community structure and ecosystem functions.How future precipitation(rainfall vs snowfall)change will impact aboveground net primary production(ANPP)is far from clear,especially when combined with increasing N availability.Methods In this study,we investigated changes in community productivity,abundance and aboveground biomass of two dominant plant functional groups(PFGs),i.e.perennial rhizome grasses(PR)and perennial bunchgrasses(PB)under the impacts of increased precipitation(rainfall vs snowfall)combined with N addition in a semiarid temperate steppe.Important Findings Summer rainfall augmentation marginally increased community ANPP,whereas it significantly increased the abundance and aboveground biomass of PR,but not those of PB.Summer rainfall addition increased the fraction of PR biomass(fPR)while decreased that of PB(fPB).Spring snow addition had no effect on aboveground biomass of either compositional PFG although it marginally increased community ANPP.Nitrogen addition significantly increased community ANPP with greater increase in PR under summer rainfall addition,indicating strong interactive effects on community ANPP largely by enhancing PR biomass.We also found a nonlinear increase in the positive effect of nitrogen addition on productivity with the increased precipitation amount.These findings indicate an amplified impact of precipitation increase on grassland productivity under the accelerated atmospheric N deposition in the future.
基金National Research Foundation of Korea(2006-000108630,2009-0076529,A307-K004:JSPS-NRF-NSFC A3 Foresight Program)Korea University(2013).
文摘Aims Understanding carbon(C)and nitrogen(N)dynamics and their dependence on the stand density of an even-aged,mature forest provides knowledge that is important for forest management.This study investigated the differences in ecosystem total C and N storage and flux between a low-density stand(LD)and a high-density stand(HD)and examined the effects of stand density on aboveground net primary productivity(ANPP),total belowground C allocation(TBCA)and net ecosystem production(NEP)in a naturally regenerated,65-to 75-year-old Pinus densiflora S.et Z.forest.Methods LD(450 trees ha^(−1))and HD(842 trees ha^(−1))were established in an even-aged,mature P.densiflora forest in September 2006.The forest had been naturally regenerated following harvesting,and the stand density was naturally maintained without any artificial management such as thinning.The diameter at breast height(DBH≥5.0cm)of all live stems within the stands was measured yearly from 2007 to 2011.To compare C and N storage and fluxes in LD and HD,C and N pools in aboveground and belowground biomass,the forest floor,coarse woody debris(CWD)and soil;soil CO_(2) efflux(R_(S));autotrophic respiration(R_(A));litter production;and soil N availability were measured.Further,ANPP,TBCA and NEP were estimated from plot-based measurement data.Important Findings Ecosystem C(Mg C ha^(−1))and N(Mg N ha^(−1))storage was,respectively,173.0±7.3(mean±SE)and 4.69±0.30 for LD and 162±11.8 and 4.08±0.18 for HD.There were no significant differences in C and N storage in the ecosystem components,except for soils,between the two stands.In contrast,there were significant differences in aboveground ANPP and TBCA between the two stands(P<0.05).Litterfall,biomass increment and R_(S) were major C flux components with values of,respectively,3.89,3.74 and 9.07 Mg C ha^(−1) year^(−1) in LD and 3.15,2.94 and 7.06 Mg C ha^(−1) year^(−1) in HD.Biometric-based NEP(Mg C ha^(−1) year^(−1))was 4.18 in LD and 5.50 in HD.Although the even-aged,mature P.densiflora forest had similar C and N allocation patterns,it showed different C and N dynamics depending on stand density.The results of the current study will be useful for elucidating the effects of stand density on C and N storage and fluxes,which are important issues in managing natural mature forest ecosystems.
基金This work was supported by the National Natural Science Foundation of China(31630010 and 31320103916).
文摘Aims Seasonal variations in species richness,aboveground net primary productivity(ANPP)and stability under resource enrichment are frequently ignored.This study explores how the impacts of resource enrichment on species richness,ANPP and stability vary among seasons in semi-arid grasslands.Methods We conducted a 3-year experiment in an Inner Mongolia grassland to determine the effects of resource input(water[W],nitrogen[N])on species richness,community ANPP and stability using seasonal sampling during the growing season(2013–2015).Structural equation modeling(SEM)was used to examine the relative importance of resource input on community stability via mechanistic pathways in each month and the whole growing season.Important Findings Resource inputs did not affect community ANPP in May and June,while N and/or NW enhanced ANPP in July and August.Resource inputs generally did not affect species richness,asynchrony or community stability in most of the time.Positive responses of perennial bunchgrasses(PB)to N and/or NW treatments contributed to the increased community ANPP in July and August.Species asynchrony may be the major mechanism contributing to community stability in May and June and the entire growing season,and PB stability is potentially the primary factor controlling community stability in July and August under resource enrichment.Our results indicate that season and resource availability could interact to regulate species richness,community ANPP and stability in semi-arid grasslands.These findings have important implications for management practices in semi-arid grasslands in order to mitigate the impact of land use and global change.
基金supported by the National Natural Science Foundation of China(31770518,31830009)Hainan University(RZ2000009932)to Shurong Zhou,Anhui Agricultural University(rc522108)and a China Scholarship Council scholarship to Li Zhang.
文摘While recent studies have shown the importance of intraspecific trait variation in the processes of community assembly,we still know little about the contributions of intraspecific trait variability to ecosystem functions.Here,we conducted a functional group removal experiment in an alpine meadow in Qinghai-Tibetan Plateau over 4 years to investigate the relative importance of inter-and intraspecific variability in plant height for productivity.We split total variability in plant height within each of 75 manipulated communities into interspecific variability(TV_(inter))and intraspecific variability within a community(ITV_(within)).Community-weighted mean height among communities was decomposed into fixed community-weighted mean(CWM_(fixed))and intraspecific variability among communities(ITV_(among)).We constructed a series of generalized additive mixed models and piecewise structural equation modeling to determine how trait variability(i.e.TV_(inter),ITV_(within),CWM_(fixed) and ITV_(among))indirectly mediated the changes in productivity in response to functional group removal.Community productivity was not only affected directly by treatment manipulations,but also increased with both inter-and intraspecific variability(i.e.CWM_(fixed) and ITV_(among))in plant height indirectly.This suggests that both the‘selection effect’and a‘shade-avoidance syndrome’can incur higher CWM_(fixed) and ITV_(among),and may simultaneously operate to regulate productivity.Our findings provide new evidence that,besides interspecific variability,intraspecific trait variability in plant height also plays a role in maintaining net primary productivity.