期刊文献+
共找到3,710篇文章
< 1 2 186 >
每页显示 20 50 100
Thermal response and optical absorptance of metals under femtosecond laser irradiation 被引量:1
1
作者 Anatoliy Y Vorobyev Chunlei Guo 《Natural Science》 2011年第6期488-495,共8页
A detailed study on correlation between residual thermal response of a sample and its optical absorptance change due to laser-induced sur-face structural modifications in multi-shot fem-tosecond laser irradiation is p... A detailed study on correlation between residual thermal response of a sample and its optical absorptance change due to laser-induced sur-face structural modifications in multi-shot fem-tosecond laser irradiation is performed. Ex-periments reveal an overall enhancement for residual thermal coupling and absorptance in air. Surprisingly, residual thermal coupling in air shows a non-monotonic dependence on pulse number and reaches a minimum value after a certain number of pulses, while these behaviors are not seen in absorptance. In vacuum, how-ever, both suppression and enhancement are seen in residual energy coupling although ab-sorptance is always enhanced. From these ob-servations, it appears that air plasma plays a dominant role in thermal coupling at a relatively low number of applied pulses, while the forma-tion of craters plays a dominant role at a high number of pulses. 展开更多
关键词 FEMTOSECOND Laser Ablation RESIDUAL ENERGY absorptance Surface STRUCTURES
下载PDF
Hollow engineering of sandwich NC@Co/NC@MnO_(2)composites toward strong wideband electromagnetic wave attenuation 被引量:18
2
作者 Chenhao Wei Lingzi Shi +5 位作者 Maoqing Li Mukun He Mengjie Li Xinrui Jing Panbo Liu Junwei Gu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第8期194-203,共10页
Multiple hetero-interfaces would strengthen interfacial polarization and boost electromagnetic wave absorption,but still remain the formidable challenges in decreasing filler loadings.Herein,sandwich NC@Co/NC@MnO_(2)c... Multiple hetero-interfaces would strengthen interfacial polarization and boost electromagnetic wave absorption,but still remain the formidable challenges in decreasing filler loadings.Herein,sandwich NC@Co/NC@MnO_(2)composites with hollow cavity,multiple hetero-interfaces,and hierarchical structures have been fabricated via the cooperative processes of self-sacrifice strategy and sequential hydrothermal reaction.In the sandwich composites,middle magnetic components(Co/NC)are wrapped by inner N-doped carbon(NC)matrix and outer hierarchical MnO_(2)nanosheets.Importantly,hollow engineering of sandwich composites with multiple hetero-interfaces greatly facilitates the enhancement of absorption bandwidth without sacrificing the absorption intensity.The maximum reflection loss of sandwich NC@Co/NC@MnO_(2)composites reaches-44.8 dB at 2.5 mm and the effective bandwidths is achieved as wide as 9.6 GHz at 2.3 mm.These results provide us a new insight into preparing efficient electromagnetic wave absorbers by interface engineering and hollow construction. 展开更多
关键词 Interface engineering Sandwich structure Hetero-interfaces Interfacial polarization Electromagnetic wave absorption
原文传递
MXene@Co hollow spheres structure boosts interfacial polarization for broadband electromagnetic wave absorption 被引量:4
3
作者 Yan Zhang Xuehua Liu +4 位作者 Zhiqiang Guo Chenyu Jia Feng Lu Zirui Jia Guanglei Wu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第9期167-175,共9页
MXene is considered as a candidate for preparing high-performance electromagnetic wave absorbing materials due to its large specific surface area,rich surface modification groups,and unique metal properties.However,th... MXene is considered as a candidate for preparing high-performance electromagnetic wave absorbing materials due to its large specific surface area,rich surface modification groups,and unique metal properties.However,the impedance matching problem caused by its high conductivity and easy stacking properties is a limiting factor.In this study,a self-assembling-etching-anchoring growth method was proposed to prepare MXene@Co electromagnetic wave absorbing materials.The hollow structure of MXene microspheres constructed with PMMA as a hard template is conducive to optimizing impedance matching and surface modification.In addition,MXene@Co exhibits abundant heterogeneous interfaces,enhancing the interfacial polarization phenomenon during electromagnetic wave absorption.Meanwhile,the surfaceanchored growth of magnetic Co particles forms a magnetic network,which provides a strong magnetic loss capability for the absorber.The hollow structure design significantly enhances the wave absorption performance compared to conventional MXene@Co composites,with a minimum reflection loss of−57.32 dB(effective absorption bandwidth of 5.2 GHz)when the thickness is 2.5 mm(2.2 mm).This work provides a meaningful reference for the design of MXene-based electromagnetic wave absorbing materials. 展开更多
关键词 MXene@Co microspheres Hollow structure Impendance matching Electromagnetic wave absorption
原文传递
Interface Engineering of Titanium Nitride Nanotube Composites for Excellent Microwave Absorption at Elevated Temperature 被引量:3
4
作者 Cuiping Li Dan Li +4 位作者 Shuai Zhang Long Ma Lei Zhang Jingwei Zhang Chunhong Gong 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期147-160,共14页
Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently... Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently,the development of high-performance EMWA materials with good impedance matching and strong loss ability in wide temperature spectrum has emerged as a top priority.Herein,due to the high melting point,good electrical conductivity,excellent environmental stability,EM coupling effect,and abundant interfaces of titanium nitride(TiN)nanotubes,they were designed based on the controlling kinetic diffusion procedure and Ostwald ripening process.Benefiting from boosted heterogeneous interfaces between TiN nanotubes and polydimethylsiloxane(PDMS),enhanced polarization loss relaxations were created,which could not only improve the depletion efficiency of EMWA,but also contribute to the optimized impedance matching at elevated temperature.Therefore,the TiN nanotubes/PDMS composite showed excellent EMWA performances at varied temperature(298-573 K),while achieved an effective absorption bandwidth(EAB)value of 3.23 GHz and a minimum reflection loss(RLmin)value of−44.15 dB at 423 K.This study not only clarifies the relationship between dielectric loss capacity(conduction loss and polarization loss)and temperature,but also breaks new ground for EM absorbers in wide temperature spectrum based on interface engineering. 展开更多
关键词 TiN nanotubes Interface engineering Polarization loss Impedance matching Electromagnetic wave absorption performance
下载PDF
MXene Hollow Spheres Supported by a C–Co Exoskeleton Grow MWCNTs for Efficient Microwave Absorption 被引量:2
5
作者 Ze Wu Xiuli Tan +4 位作者 Jianqiao Wang Youqiang Xing Peng Huang Bingjue Li Lei Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期76-94,共19页
High-performance microwave absorption(MA) materials must be studied immediately since electromagnetic pollution has become a problem that cannot be disregarded. A straightforward composite material, comprising hollow ... High-performance microwave absorption(MA) materials must be studied immediately since electromagnetic pollution has become a problem that cannot be disregarded. A straightforward composite material, comprising hollow MXene spheres loaded with C–Co frameworks, was prepared to develop multiwalled carbon nanotubes(MWCNTs). A high impedance and suitable morphology were guaranteed by the C–Co exoskeleton, the attenuation ability was provided by the MWCNTs endoskeleton, and the material performance was greatly enhanced by the layered core–shell structure. When the thickness was only 2.04 mm, the effective absorption bandwidth was 5.67 GHz, and the minimum reflection loss(RLmin) was-70.70 d B. At a thickness of 1.861 mm, the sample calcined at 700 ℃ had a RLmin of-63.25 d B. All samples performed well with a reduced filler ratio of 15 wt%. This paper provides a method for making lightweight core–shell composite MA materials with magnetoelectric synergy. 展开更多
关键词 MXene C-Co skeleton MWCNTS Microwave absorption
下载PDF
Nitrogen‑Doped Magnetic‑Dielectric‑Carbon Aerogel for High‑Efficiency Electromagnetic Wave Absorption 被引量:2
6
作者 Shijie Wang Xue Zhang +5 位作者 Shuyan Hao Jing Qiao Zhou Wang Lili Wu Jiurong Liu Fenglong Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期313-327,共15页
Carbonbased aerogels derived from biomass chitosan are encountering a flourishing moment in electromagnetic protection on account of lightweight,controllable fabrication and versatility.Nevertheless,developing a facil... Carbonbased aerogels derived from biomass chitosan are encountering a flourishing moment in electromagnetic protection on account of lightweight,controllable fabrication and versatility.Nevertheless,developing a facile construction method of component design with carbon-based aerogels for high-efficiency electromagnetic wave absorption(EWA)materials with a broad effective absorption bandwidth(EAB)and strong absorption yet hits some snags.Herein,the nitrogen-doped magnetic-dielectric-carbon aerogel was obtained via ice template method followed by carbonization treatment,homogeneous and abundant nickel(Ni)and manganese oxide(MnO)particles in situ grew on the carbon aerogels.Thanks to the optimization of impedance matching of dielectric/magnetic components to carbon aerogels,the nitrogen-doped magnetic-dielectric-carbon aerogel(Ni/MnO-CA)suggests a praiseworthy EWA performance,with an ultra-wide EAB of 7.36 GHz and a minimum reflection loss(RLmin)of−64.09 dB,while achieving a specific reflection loss of−253.32 dB mm−1.Furthermore,the aerogel reveals excellent radar stealth,infrared stealth,and thermal management capabilities.Hence,the high-performance,easy fabricated and multifunctional nickel/manganese oxide/carbon aerogels have broad application aspects for electromagnetic protection,electronic devices and aerospace. 展开更多
关键词 Electromagnetic wave absorption Wide bandwidth Dielectric-magnetic synergy MULTIFUNCTION
下载PDF
Absorption properties and mechanism of lightweight and broadband electromagnetic wave-absorbing porous carbon by the swelling treatment 被引量:2
7
作者 Jianghao Wen Di Lan +4 位作者 Yiqun Wang Lianggui Ren Ailing Feng Zirui Jia Guanglei Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1701-1712,共12页
Bioderived carbon materials have garnered considerable interest in the fields of microwave absorption and shielding due to their reproducibility and environmental friendliness.In this study,KOH was evenly distributed ... Bioderived carbon materials have garnered considerable interest in the fields of microwave absorption and shielding due to their reproducibility and environmental friendliness.In this study,KOH was evenly distributed on biomass Tremella using the swelling induction method,leading to the preparation of a three-dimensional network-structured hierarchical porous carbon(HPC)through carbonization.The achieved microwave absorption intensity is robust at-47.34 dB with a thin thickness of 2.1 mm.Notably,the widest effective absorption bandwidth,reaching 7.0 GHz(11–18 GHz),is attained at a matching thickness of 2.2 mm.The exceptional broadband and reflection loss performance are attributed to the 3D porous networks,interface effects,carbon network defects,and dipole relaxation.HPC has outstanding absorption characteristics due to its excellent impedance matching and high attenuation constant.The uniform pore structures considerably optimize the impedance-matching performance of the material,while the abundance of interfaces and defects enhances the dielectric loss,thereby improving the attenuation constant.Furthermore,the impact of carbonization temperature and swelling rate on microwave absorption performance was systematically investigated.This research presents a strategy for preparing absorbing materials using biomass-derived HPC,showcasing considerable potential in the field of electromagnetic wave absorption. 展开更多
关键词 BIOMASS hierarchical porous carbon dielectric loss electromagnetic wave absorption
下载PDF
Tracking Regulatory Mechanism of Trace Fe on Graphene Electromagnetic Wave Absorption 被引量:2
8
作者 Kaili Zhang Yuhao Liu +5 位作者 Yanan Liu Yuefeng Yan Guansheng Ma Bo Zhong Renchao Che Xiaoxiao Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期79-96,共18页
Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the... Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide(RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss(RLmin) of Fe/RGO-2composite reaches-53.38 dB(2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz(2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content,which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials. 展开更多
关键词 Reduced graphene oxide Fe nanosheets Dielectric loss Electromagnetic wave absorption
下载PDF
Conjugate ferrocene polymer derived magnetic Fe/C nanocomposites for electromagnetic absorption application 被引量:2
9
作者 Aming Xie Zhendong Ma +5 位作者 Ziming Xiong Weijin Li Lai Jiang Qiu Zhuang Siyao Cheng Wei Lu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第8期125-131,共7页
Coordination bonds are relatively unstable compared to covalent bonds,and common carbon-based absorbing material precursors are bonded in the form of coordination bonds.In this work,we have introduced ferrocene units ... Coordination bonds are relatively unstable compared to covalent bonds,and common carbon-based absorbing material precursors are bonded in the form of coordination bonds.In this work,we have introduced ferrocene units into conjugated microporous polymers(CMP)in one step by Suzuki reaction.By adjusting the proportion of ferrocene units,a series of magnetic Fe-C nanocomposites(Fe-P-XC)derived from conjugated ferrocene polymers without heteroatom doping(N,S,P,etc.)were formed.The Fe-P-2C composite has good absorption properties with minimum reflection loss at 4.4 GHz(-58.66 dB)and effective absorption bandwidth(EAB)of 6.28 GHz at 2.4 mm(11.72-18 GHz).Compared with the precursor materials formed by coordination bonds,the present work reveals the electromagnetic wave absorption mechanism of carbon-based materials without heteroatom doping through a simple and effective strategy. 展开更多
关键词 Covalent bonds Suzuki reaction Conjugated ferrocene polymers Electromagnetic wave absorption
原文传递
Optimization of multiple attenuation mechanisms by cation substitution in imidazolic MOFs-derived porous composites for superior broadband electromagnetic wave absorption 被引量:2
10
作者 Hao Yu Xin Kou +5 位作者 Xueqing Zuo Ding Xi Haijun Guan Pengfei Yin Lijia Xu Yongpeng Zhao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第9期176-187,共12页
Metal-organic frameworks(MOFs)derived composites are extremely potential electromagnetic wave(EMW)absorbers.However,the permittivity of absorbers directly derived from MOFs with solid structure is usually relatively l... Metal-organic frameworks(MOFs)derived composites are extremely potential electromagnetic wave(EMW)absorbers.However,the permittivity of absorbers directly derived from MOFs with solid structure is usually relatively low,inevitably limiting their further applications.Cation substitution can primely overcome the problem by regulating the morphology and atomic space occupation to enhance multiple loss mechanisms and impedance matching characteristics.However,universal mechanisms of the effect on EMW absorption performance influenced by cation substitution are still comparatively inadequate,which prospectively requires further exploration.Herein,a series of imidazolic MOFs were fabricated by ultrasonic symbiosis method and tailored by subsequent cation substitution strategy to prepare target porous composites.At a low filling rate and thin thickness,the as-obtained samples reach the optimal reflection loss and effective absorption bandwidth values of–49.81 dB and 7.63 GHz,respectively.The intercoupling between multiple atoms lays a significant foundation for abundant heterogeneous interfaces and defect vacancies,which effectively ameliorate the attenuation mechanisms.Meanwhile,the porous structure introduced by cation substitution reduces the bulk density to enhance the impedance matching and multiple reflections simultaneously.This study provides a helpful idea to exceedingly improve the EMW absorbing performance of imidazolic MOFs-derived composites by cation substitution. 展开更多
关键词 Multiple attenuation mechanisms Cation substitution Porous composites Electromagnetic wave absorption
原文传递
Reinforcing effects of polypropylene on energy absorption and fracturing of cement-based tailings backfill under impact loading 被引量:1
11
作者 Jiajian Li Shuai Cao Erol Yilmaz 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期650-664,共15页
Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits su... Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits susceptibility to dynamic events,such as impact ground pressure and blast vibrations.This paper investigates the energy and crack distribution behavior of FRCTB under dynamic impact,considering the height/diameter(H/D)effect.Split Hopkinson pressure bar,industrial computed tomography scan,and scanning electron microscopy(SEM)experiments were carried out on six types of FRCTB.Laboratory outcomes confirmed fiber aggregation at the bottom of specimens.When H/D was less than 0.8,the proportion of PP fibers distributed along theθangle direction of80°-90°increased.For the total energy,all samples presented similar energy absorption,reflectance,and transmittance.However,a rise in H/D may cause a rise in the energy absorption rate of FRCTB during the peak phase.A positive correlation existed between the average strain rate and absorbed energy per unit volume.The increase in H/D resulted in a decreased crack volume fraction of FRCTB.When the H/D was greater than or equal to 0.7,the maximum crack volume fraction of FRCTB was observed close to the incidence plane.Radial cracks were present only in the FRCTB with an H/D ratio of 0.5.Samples with H/D ratios of 0.5 and 0.6 showed similar distributions of weakly and heavily damaged areas.PP fibers can limit the emergence and expansion of cracks by influencing their path.SEM observations revealed considerable differences in the bonding strengths between fibers and the FRCTB.Fibers that adhered particularly well to the substrate were attracted together with the hydration products adhering to surfaces.These results show that FRCTB is promising as a sustainable and green backfill for determining the design properties of mining with backfill. 展开更多
关键词 cement-based tailings fiber-reinforced backfills FRACTURE energy absorption impact loading
下载PDF
Remote sensing of air pollution incorporating integrated-path differential-absorption and coherent-Doppler lidar 被引量:1
12
作者 Ze-hou Yang Yong Chen +5 位作者 Chun-li Chen Yong-ke Zhang Ji-hui Dong Tao Peng Xiao-feng Li Ding-fu Zhou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期594-601,共8页
An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption l... An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption lidar(DIAL) and coherent-doppler lidar(CDL) techniques using a dual tunable TEA CO_(2)laser in the 9—11 μm band and a 1.55 μm fiber laser.By combining the principles of differential absorption detection and pulsed coherent detection,the system enables agile and remote sensing of atmospheric pollution.Extensive static tests validate the system’s real-time detection capabilities,including the measurement of concentration-path-length product(CL),front distance,and path wind speed of air pollution plumes over long distances exceeding 4 km.Flight experiments is conducted with the helicopter.Scanning of the pollutant concentration and the wind field is carried out in an approximately 1 km slant range over scanning angle ranges from 45°to 65°,with a radial resolution of 30 m and10 s.The test results demonstrate the system’s ability to spatially map atmospheric pollution plumes and predict their motion and dispersion patterns,thereby ensuring the protection of public safety. 展开更多
关键词 Differential absorption LIDAR COHERENT Doppler lidar Remoting sensing Atmospheric pollution
下载PDF
Realizing optimized interfacial polarization and impedance matching with CNT-confined Co nanoparticles in hollow carbon microspheres for enhanced microwave absorption 被引量:1
13
作者 Chang Zhang Kaicheng Luo +7 位作者 Jiwei Liu Huibin Zhang Chunyang Xu Ruixuan Zhang Yifeng Cheng Jincang Zhang Limin Wu Renchao Che 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第8期1-9,共9页
The hollow porous structure with exceptional interfacial effect and customizable internal environment shows significant potential for application as electromagnetic shielding and absorption materials.However,designing... The hollow porous structure with exceptional interfacial effect and customizable internal environment shows significant potential for application as electromagnetic shielding and absorption materials.However,designing hollow porous electromagnetic absorbers with both desirable impedance matching and high loss capability remains a challenge.Herein,3D hollow porous electromagnetic microspheres were constructed by assembling 0D Co magnetic nanoparticles,1D carbon nanotubes,and 2D carbon nanosheets.Due to the sufficient sites for Co^(2+)riveting,the high loading of magnetic carbon nanotubes(CoNC)and porous carbon spheres formed high-density interfaces,enhancing the interfacial polarization.Furthermore,high-density CoNC were grown in situ on the hollow porous carbon(HPC)microsphere,forming a highly dispersed 3D magnetic network that inhibited the aggregation of magnetic nanoparticles and enhanced magnetic coupling.Therefore,the asprepared CoNC/HPC microspheres exhibited excellent microwave absorption(MA)performance,with a minimum reflection loss of-33.2 dB and an effective bandwidth of 5.5 GHz at a thickness of only 1.8 mm.The interfacial polarization mechanism for enhanced MA performance was demonstrated by electron holography and density functional theory calculations.Magnetic holography and micromagnetic simulations also revealed magnetic confinement and coupling mechanism.This work provides a new approach for designing electromagnetic absorbers with optimized impedance matching and loss capability. 展开更多
关键词 Microwave absorption Hollow porous structure Multidimensional assembly Interfacial polarization Magnetic coupling
原文传递
Efficient Electromagnetic Wave Absorption and Thermal Infrared Stealth in PVTMS@MWCNT Nano‑Aerogel via Abundant Nano‑Sized Cavities and Attenuation Interfaces 被引量:1
14
作者 Haoyu Ma Maryam Fashandi +5 位作者 Zeineb Ben Rejeb Xin Ming Yingjun Liu Pengjian Gong Guangxian Li Chul B.Park 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期370-383,共14页
Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT... Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT aerogel structure shows nano-pore size(30-40 nm),high specific surface area(559 m^(2)g^(−1)),high void fraction(91.7%)and enhanced mechanical property:(1)the nano-pore size is beneficial for efficiently blocking thermal conduction and thermal convection via Knudsen effect(beneficial for infrared(IR)stealth);(2)the heterogeneous interface was beneficial for IR reflection(beneficial for IR stealth)and MWCNT polarization loss(beneficial for electromagnetic wave(EMW)attenuation);(3)the high void fraction was beneficial for enhancing thermal insulation(beneficial for IR stealth)and EMW impedance match(beneficial for EMW attenuation).Guided by the above theoretical design strategy,PVTMS@MWCNT nano-aerogel shows superior EMW absorption property(cover all Ku-band)and thermal IR stealth property(ΔT reached 60.7℃).Followed by a facial combination of the above nano-aerogel with graphene film of high electrical conductivity,an extremely high electromagnetic interference shielding material(66.5 dB,2.06 mm thickness)with superior absorption performance of an average absorption-to-reflection(A/R)coefficient ratio of 25.4 and a low reflection bandwidth of 4.1 GHz(A/R ratio more than 10)was experimentally obtained in this work. 展开更多
关键词 Nano-pore size Heterogeneous interface Electromagnetic wave absorption Thermal infrared stealth Nano-aerogel
下载PDF
Compositional and Hollow Engineering of Silicon Carbide/Carbon Microspheres as High-Performance Microwave Absorbing Materials with Good Environmental Tolerance 被引量:1
15
作者 Lixue Gai Yahui Wang +5 位作者 Pan Wan Shuping Yu Yongzheng Chen Xijiang Han Ping Xu Yunchen Du 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期128-146,共19页
Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable M... Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable MAMs under some rigorous conditions,while their composites still fail to produce satisfactory microwave absorption performance regardless of the improvements as compared with the individuals.Herein,we have successfully implemented compositional and structural engineering to fabricate hollow Si C/C microspheres with controllable composition.The simultaneous modulation on dielectric properties and impedance matching can be easily achieved as the change in the composition of these composites.The formation of hollow structure not only favors lightweight feature,but also generates considerable contribution to microwave attenuation capacity.With the synergistic effect of composition and structure,the optimized SiC/C composite exhibits excellent performance,whose the strongest reflection loss intensity and broadest effective absorption reach-60.8 dB and 5.1 GHz,respectively,and its microwave absorption properties are actually superior to those of most SiC/C composites in previous studies.In addition,the stability tests of microwave absorption capacity after exposure to harsh conditions and Radar Cross Section simulation data demonstrate that hollow SiC/C microspheres from compositional and structural optimization have a bright prospect in practical applications. 展开更多
关键词 SiC/C composites Compositional engineering Hollow engineering Microwave absorption Environmental tolerance
下载PDF
Preparation of CIP@TiO_(2) composite with broadband electromagnetic wave absorption properties 被引量:1
16
作者 Qiang Su Hanqun Wang +3 位作者 Yunfei He Dongdong Liu Xiaoxiao Huang Bo Zhong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期197-205,共9页
Scholars aim for the improved impedance matching (Z) of materials while maintaining their excellent wave absorption properties. Based on the hydrolysis characteristics of isopropyl titanate, a simple preparation proce... Scholars aim for the improved impedance matching (Z) of materials while maintaining their excellent wave absorption properties. Based on the hydrolysis characteristics of isopropyl titanate, a simple preparation process for the coating of carbonyl iron powder(CIP) with TiO_(2) was designed. Given the TiO2coating, the Z of the CIP@TiO_(2) composite was adjusted well by decreasing the dielectric constant. Moreover, the interfacial polarization of CIP@TiO_(2) was enhanced. Ultimately, the electromagnetic-wave (EMW) absorption property of the CIP@TiO_(2)composite was improved substantially, the minimum reflection loss reached-46.07 dB, and the effective absorption bandwidth can reach 8 GHz at the composite thickness of 1.5 mm. Moreover, compared with CIP, the oxidation resistance of CIP@TiO_(2)showed remarkable improvement. The results revealed that the oxidation starting temperature of CIP@TiO_(2) as about 400℃,whereas the uncoated CIP had an oxidation starting temperature of approximately 250℃. Moreover, the largest oxidation rate temperature of CIP@TiO_(2) increased to around 550℃. This work opens up a novel strategy for the production of high-performance EMW absorbers via structural design. 展开更多
关键词 carbonyl iron@titanium dioxide electromagnetic-wave absorption impedance matching oxidation resistance
下载PDF
From VIB‑to VB‑Group Transition Metal Disulfides:Structure Engineering Modulation for Superior Electromagnetic Wave Absorption 被引量:1
17
作者 Junye Cheng Yongheng Jin +10 位作者 Jinghan Zhao Qi Jing Bailong Gu Jialiang Wei Shenghui Yi Mingming Li Wanli Nie Qinghua Qin Deqing Zhang Guangping Zheng Renchao Che 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期218-257,共40页
The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various field... The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various fields,such as catalysis,energy storage,sensing,etc.In recent years,a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption(EMA)has been carried out.Therefore,it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application.In this review,recent advances in the development of electromagnetic wave(EMW)absorbers based on TMDs,ranging from the VIB group to the VB group are summarized.Their compositions,microstructures,electronic properties,and synthesis methods are presented in detail.Particularly,the modulation of structure engineering from the aspects of heterostructures,defects,morphologies and phases are systematically summarized,focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance.Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance. 展开更多
关键词 Transition metal disulfides Electromagnetic wave absorption Impedance matching Structure engineering modulation
下载PDF
Enhancing electromagnetic wave absorption with core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres 被引量:1
18
作者 Xuewen Jiang Qian Wang +7 位作者 Limeng Song Hongxia Lu Hongliang Xu Gang Shao Hailong Wang Rui Zhang Changan Wang Bingbing Fan 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期90-104,共15页
Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric const... Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric constant of Ti_(3)C_(2)T_(x)MXene,we have successfully synthesized core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres.This architecture,comprising SiO_(2)as the core,MXene as the intermediate layer,and MoS_(2)as the outer shell,is achieved through an electrostatic self‐assembly method combined with a hydrothermal process.This complex core‐shell structure not only provides a variety of loss mechanisms that effectively dissipate electromagnetic energy but also prevents self‐aggregation of MXene and MoS_(2)nanosheets.Notably,the synergistic combination of SiO_(2)and MoS_(2)with highly conductive MXene enables the suitable dielectric constant of the composites,ensuring optimal impedance matching.Therefore,the core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres exhibit excellent EMW absorption performance,featuring a remarkable minimum reflection loss(RL_(min))of−52.11 dB(2.4 mm).It is noteworthy that these nanospheres achieve an ultra‐wide effective absorption bandwidth(EAB)of 6.72 GHz.This work provides a novel approach for designing and synthesizing high‐performance EMW absorbers characterized by“wide bandwidth and strong reflection loss.” 展开更多
关键词 core‐shell structure electromagnetic wave absorption multiloss mechanism SiO_(2)@MXene@MoS_(2)
下载PDF
MOFs‑Derived Strategy and Ternary Alloys Regulation in Flower‑Like Magnetic‑Carbon Microspheres with Broadband Electromagnetic Wave Absorption
19
作者 Mengqiu Huang Bangxin Li +7 位作者 Yuetong Qian Lei Wang Huibin Zhang Chendi Yang Longjun Rao Gang Zhou Chongyun Liang Renchao Che 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期479-493,共15页
Broadband electromagnetic(EM)wave absorption materials play an important role in military stealth and health protection.Herein,metal–organic frameworks(MOFs)-derived magnetic-carbon CoNiM@C(M=Cu,Zn,Fe,Mn)microspheres... Broadband electromagnetic(EM)wave absorption materials play an important role in military stealth and health protection.Herein,metal–organic frameworks(MOFs)-derived magnetic-carbon CoNiM@C(M=Cu,Zn,Fe,Mn)microspheres are fabricated,which exhibit flower-like nano–microstructure with tunable EM response capacity.Based on the MOFs-derived CoNi@C microsphere,the adjacent third element is introduced into magnetic CoNi alloy to enhance EM wave absorption performance.In term of broadband absorption,the order of efficient absorption bandwidth(EAB)value is Mn>Fe=Zn>Cu in the CoNiM@C microspheres.Therefore,MOFs-derived flower-like CoNiMn@C microspheres hold outstanding broadband absorption and the EAB can reach up to 5.8 GHz(covering 12.2–18 GHz at 2.0 mm thickness).Besides,off-axis electron holography and computational simulations are applied to elucidate the inherent dielectric dissipation and magnetic loss.Rich heterointerfaces in CoNiMn@C promote the aggregation of the negative/positive charges at the contacting region,forming interfacial polarization.The graphitized carbon layer catalyzed by the magnetic CoNiMn core offered the electron mobility path,boosting the conductive loss.Equally importantly,magnetic coupling is observed in the CoNiMn@C to strengthen the magnetic responding behaviors.This study provides a new guide to build broadband EM absorption by regulating the ternary magnetic alloy. 展开更多
关键词 Magnetic-carbon microspheres MOFs derivatives Electromagnetic wave absorption Magnetic loss Broadband absorption
下载PDF
Characteristic analysis of 1.06μm long-cavity diode lasers based on asymmetric waveguide structures
20
作者 ZHAO Ren-Ze GAO Xin +3 位作者 FU Ding-Yang ZHANG Yue SU Peng BO Bao-Xue 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2024年第4期557-562,共6页
In long-cavity edge-emitting diode lasers,longitudinal spatial hole burning(LSHB),two-photon ab⁃sorption(TPA)and free carrier absorption(FCA)are among the key factors that affect the linear increase in out⁃put power a... In long-cavity edge-emitting diode lasers,longitudinal spatial hole burning(LSHB),two-photon ab⁃sorption(TPA)and free carrier absorption(FCA)are among the key factors that affect the linear increase in out⁃put power at high injection currents.In this paper,a simplified numerical analysis model is proposed for 1.06μm long-cavity diode lasers by combining TPA and FCA losses with one-dimensional(1D)rate equations.The ef⁃fects of LSHB,TPA and FCA on the output characteristics are systematically analyzed,and it is proposed that ad⁃justing the front facet reflectivity and the position of the quantum well(QW)in the waveguide layer can improve the front facet output power. 展开更多
关键词 diode lasers longitudinal spatial hole burning free carrier absorption two-photon absorption
下载PDF
上一页 1 2 186 下一页 到第
使用帮助 返回顶部