Micrometric-thin cells(MCs)with alkali vapor atoms have been valuable for research and applications of hyperfine Zeeman splitting and atomic magnetometers under strong magnetic fields.We theoretically and experimental...Micrometric-thin cells(MCs)with alkali vapor atoms have been valuable for research and applications of hyperfine Zeeman splitting and atomic magnetometers under strong magnetic fields.We theoretically and experimentally study the saturated absorption spectra using a 100-μm cesium MC,where the pump and probe beams are linearly polarized with mutually perpendicular polarizations,and the magnetic field is along the pump beam.Because of the distinctive thin chamber of the MC,crossover spectral lines in saturated absorption spectra are largely suppressed leading to clear splittings of hyperfine Zeeman transitions in experiments,and the effect of spatial magnetic field gradient is expected to be reduced.A calculation method is proposed to achieve good agreements between theoretical calculations and experimental results.This method successfully explains the suppression of crossover lines in MCs,as well as the effects of magnetic field direction,propagation and polarization directions of the pump/probe beam on saturated absorption spectrum.The saturated absorption spectrum with suppressed crossover lines is used for laser frequency stabilization,which may provide the potential value of MCs for high spatial resolution strong-field magnetometry with high sensitivity.展开更多
In gemmology,the term“Alexandrite effect”is used to describe colour change phenomenon when a gemstone is observed under different light sources,usually between daylight and incandescent light.The definition of the A...In gemmology,the term“Alexandrite effect”is used to describe colour change phenomenon when a gemstone is observed under different light sources,usually between daylight and incandescent light.The definition of the Alexandrite effect is constantly being broadened with new discovery of gem resource.The traditional definition of the Alexandrite effect attributing the colour change phenomenon to the presence of two maximum transmission regions and a maximum absorption region in the absorption spectra.In this study,7 blue spinels and 5 blue gemstones(including tanzanite,kyanite,fluorite,and 2 sapphires)showing the Alexandrite effect were investigated.The goal is to explain the cause of blue-to-violet Alexandrite effect and the spectral features causing such colour change.In the UV-Vis spectra,all samples showed a maximum absorption peak in the range of 534-610 nm,within the green region to orange region.The traditional explanation of green to red Alexandrite effect required a transmission window in the red region;however,some of our samples did not show this transmission window and the blue-to-violet Alexandrite effect was still visible.Therefore,it is incomplete to explain the mechanism of the Alexandrite effect according to their characteristic absorption spectra,a systematic study based on modern colour science and colour perception in human vision is required to elucidate the blue-to-violet Alexandrite effect.展开更多
The absorption spectrum of the C1Ⅱ state of N2O molecule in the wavelength range of 142.5-147.5 nm has been measured under the jet-cooled condition, and the clear spectral features are displayed. A vibrational progre...The absorption spectrum of the C1Ⅱ state of N2O molecule in the wavelength range of 142.5-147.5 nm has been measured under the jet-cooled condition, and the clear spectral features are displayed. A vibrational progression is observed with a frequency interval of about 500 cm-1. With the aid of potential energy surfaces (PES) of the low-lying electronic states of N2O, the vibrational progression is assigned as the bending mode of the repulsive C1Ⅱ state. From the Fourier transformation analysis, the recurrence period of the periodic orbit near the transition state region is derived to be 65 fs. Through the least-square Lorentzian fitting, the lifetimes of the resonance levels are estimated from their profile widths to be about 20 fs, which is shorter than the recurrence period. Therefore, a new explanation is suggested for the observed diffuse spectral structure, based on the behavior of dissociating N20 on PES of the C1Ⅱ state in the present excitation energy range.展开更多
Borosilicate glass with high rare earth content was fabricated by traditional method. The influence of glass compositions and rare earth content on absorption spectra was examined and discussed. With increasing Sm2O3 ...Borosilicate glass with high rare earth content was fabricated by traditional method. The influence of glass compositions and rare earth content on absorption spectra was examined and discussed. With increasing Sm2O3 content, the intensity of characteristic absorption peak is increased and the absorption peak is broadened. With increasing of the ratios of SiO2/B2O3 and Al2O3/SiO2, the broadening degree of absorption peak is increased. The experimental results provide basis for making special optical glasses which have the characteristics of high absorption for special wavelength laser and high transparence for visible light.展开更多
The absorption spectrum of the cyclotrime-thylenetrinitramine (RDX) with four different particle sizes are measured in the frequency range from 0.1THz to 2.5THz by using the terahertz time-domain spectroscopy (THz-...The absorption spectrum of the cyclotrime-thylenetrinitramine (RDX) with four different particle sizes are measured in the frequency range from 0.1THz to 2.5THz by using the terahertz time-domain spectroscopy (THz-TDS), and the characteristic absorption peaks are acquired. All the samples are measured in a loose condition, which is very close to the real using environment of the RDX. The results show that the four kinds of samples have similar absorption peaks around the frequency of 0.82THz, 1.05 THz, 1.30THz, 1.46THz, 1.65THz, and 1.95THz. The sample with a large particle size obtains more peaks than the small one, while the peaks obtained from the sample with a small size are more protrudent. The reasons for these differences can be the refraction, scattering, and attenuation of the terahertz wave when it passes through the crystal samples. The theoretical terahertz spectrum of RDX was simulated by using density functional calculations, in which, the Becke & Perdew-Wang's functional is used in a double numerical plus polarization method (BP/DNP). Good agreements between the experimental and computed results show that the three peaks located in the frequency of 1.30THz, 1.48THz, and 1.96THz are caused respectively by the twisting of three-nitrogen heterocyclic, the symmetrical oscillations of the double nitro groups, and the oscillations of a single nitro group.展开更多
UV-Vis spectrum and the third-order nonlinear optical properties of the chiral camphor-derived β-diketonate have been studied at the B3LYP/6-31G* level. The results showed that the introduction of electron-drawing g...UV-Vis spectrum and the third-order nonlinear optical properties of the chiral camphor-derived β-diketonate have been studied at the B3LYP/6-31G* level. The results showed that the introduction of electron-drawing group -CF3 and -C3F7 on β-diketonate made the strongest absorption peak red-shift and the lowest energy absorption blue-shied. Introduction of -OC2H5 on the benzene or pyridine ring made the lowest energy absorption blue-shift. When the -C2H3 was introduced on the benzene or pyridine ring, the lowest energy absorption was red-shifted. Introduction of electron-donating group on β-diketonate can enlarge their nonlinear optical properties. On the contrary, the introduction of electron-drawing group dropped it down.展开更多
In the infrared spectrum absorbed type gas concentration sensor,voltage signal obtained from the two-channel thermopile infrared detector TPS2534 is very weak.In order to solve this problem,the authors have establishe...In the infrared spectrum absorbed type gas concentration sensor,voltage signal obtained from the two-channel thermopile infrared detector TPS2534 is very weak.In order to solve this problem,the authors have established the structure of the sensor and designed weak signal detecting circuit of the sensor based on infrared spectrum absorption principle,differential de-noising principle and weak signal detecting principle.The authors have made experiments using CH4 gas.The results show that the circuit can remove noise effectively and detect weak electrical signal obtained from the detector.展开更多
Organic semiconductoe 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) has been synthetized with 1,8-naphthalic anhydride using chemical method.X-ray diffraction spectrum shows that it is monoclinic.Visible absorp...Organic semiconductoe 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) has been synthetized with 1,8-naphthalic anhydride using chemical method.X-ray diffraction spectrum shows that it is monoclinic.Visible absorption spectrum shows that its gap band is 2.2 eV with singlet exciton bandwidth of 0.9 eV.展开更多
In this work,high-fidelity full-dimensional potential energy surfaces(PESs)of the ground(X^(2)A′)and first doublet excited(A^(2)A″)electronic states of HCO were constructed using neural network method.In total,4624 ...In this work,high-fidelity full-dimensional potential energy surfaces(PESs)of the ground(X^(2)A′)and first doublet excited(A^(2)A″)electronic states of HCO were constructed using neural network method.In total,4624 high-level ab initio points have been used which were calculated at Davidson corrected internally contracted MRCI-F12 level of theory with a quite large basis set(ACV5Z)without any scaling scheme.Compared with the results obtained from the scaled PESs of Ndenguéet al.,the absorption spectrum based on our PESs has slightly larger intensity,and the peak positions are shifted to smaller energy for dozens of wavenumbers.It is indicated that the scaling of potential energy may make some unpredictable difference on the dynamical results.However,the resonance energies based on those scaled PESs are slightly closer to the current available experimental values than ours.Nevertheless,the unscaled high-level PESs developed in this work might provide a platform for further experimental and theoretical photodissociation and collisional dynamic studies for HCO system.展开更多
Objective: The aim of our study was to discovery the different cell cycle arrest effect after different densities HeLa cells treated with Trichostatin A (TSA). In addition, this study would find some important rela...Objective: The aim of our study was to discovery the different cell cycle arrest effect after different densities HeLa cells treated with Trichostatin A (TSA). In addition, this study would find some important relationship between cycle arrest effect and UV absorption spectrum of cell. Methods: 0.2 IJM TSA was applied to act on HeLa cells of different density. Then, the cycle arrest effect and UV absorption spectrum of cells were investigated, which provide support to analyze the effect of TSA on cancer cells. Results: Cell cycle arrest effect in G0/G1 of the lower density cells was more obvious than that in other groups. The other discovery in this work was that the cellular UV absorption value was higher when the density of cultured cell was lower. Conclusion: This experiment would guide the clinical study on early or late stage cancer patients in the future. On the other hand, this work indicates when cells were arrested in G0/G1 phase, the cellular absorption value increased at the same time, so UV absorption spectrum could characterize the change of cell cycle.展开更多
This paper presents a new method to study the interaction between tangerine peel and beer by absorption spectrum.The author explores the change laws and the differences of the absorbance on some wave band from the abs...This paper presents a new method to study the interaction between tangerine peel and beer by absorption spectrum.The author explores the change laws and the differences of the absorbance on some wave band from the absorption spectrums of tangerine peel and the mixture of tangerine peel and beer. The results show that there is an obvious difference around 323 nm though the absorbance values of the two samples are almost similar in the most bands. The absorbance value of the mixture is obviously greater than that of tangerine peel at 276 nm in the spectrums, and there is a shift of the peak position in the absorption spectrum of the mixture, which shows the differences of the absorbance values and the peak positions of the two samples. Through comparing the characteristics of the two samples' absorption spectrums, a new method for researching new pharmacological action of tangerine peel is presented in this paper. The result indicates that the technology of spectrum analysis will play an important role in the research and development of Chinese herbal pharmacology and new pharmacology.展开更多
The femtosecond pulse shaping technique has been shown to be an effective method to control the multi-photon absorption by the light–matter interaction. Previous studies mainly focused on the quantum coherent control...The femtosecond pulse shaping technique has been shown to be an effective method to control the multi-photon absorption by the light–matter interaction. Previous studies mainly focused on the quantum coherent control of the multi-photon absorption by the phase, amplitude and polarization modulation, but the coherent features of the multi-photon absorption depending on the energy level structure, the laser spectrum bandwidth and laser central frequency still lack in-depth systematic research. In this work, we further explore the coherent features of the resonance-mediated two-photon absorption in a rubidium atom by varying the energy level structure, spectrum bandwidth and central frequency of the femtosecond laser field. The theoretical results show that the change of the intermediate state detuning can effectively influence the enhancement of the near-resonant part, which further affects the transform-limited (TL)-normalized final state population maximum. Moreover, as the laser spectrum bandwidth increases, the TL-normalized final state population maximum can be effectively enhanced due to the increase of the enhancement in the near-resonant part, but the TL-normalized final state population maximum is constant by varying the laser central frequency. These studies can provide a clear physical picture for understanding the coherent features of the resonance-mediated two-photon absorption, and can also provide a theoretical guidance for the future applications.展开更多
We demonstrate an experimental method for the in situ temperature measurement of atomic vapor using the saturated absorption spectrum. By separately manipulating the frequency of the pump and probe beams, the position...We demonstrate an experimental method for the in situ temperature measurement of atomic vapor using the saturated absorption spectrum. By separately manipulating the frequency of the pump and probe beams, the position of the crossover peaks can move along the spectrum. Different velocity classes of atoms contribute to the crossover during the movement. We study the relationship between the intensity change of peaks and vapor temperature. Our experimental result around room temperature shows a deviation of less than 0.3 K. Compared with traditional thermometry using absorption spectroscopy, higher accuracy can theoretically be achieved with real-time thermometry.展开更多
There has been an increasing interest in the research of diode laser pumped sol id state lasers in recent years because of the rapid development of high power d iode laser.This paper reports the crystal growth and the...There has been an increasing interest in the research of diode laser pumped sol id state lasers in recent years because of the rapid development of high power d iode laser.This paper reports the crystal growth and the spectral properties of low temperature phase Nd 3+ : β LaSc 3(BO 3) 4crystal.The low temp er ature phase β LaSc 3(BO 3) 4 crystal belongs to the rhombohedral with space group R 32 and cell parameters a =0.9819, c =0.7987mm, Z =3.The 5at.% Nd 3+ :β LaSc 3(BO 3) 4 crystal is only grown by the flux method.Nd 3+ :β LaSc 3(BO 3) 4 crystal with dimension of 43mm×32mm×15mm has been g rown by TSSG method.Its spectral properties have been investigated.The results show that the FWHM of absorption band at 808nm is 3.3nm,the fluorescence lifetime is 112μs,the emission cross section at 1063nm is 15.6×10 -20 cm 2.Based on J udd Ofelt theory,the spectral parameters were obtained:the parameters of line s trengths Ω λ are Ω 2=2.85×10 -20 cm 2, Ω 4=3.69×10 -20 cm 2, Ω 6=4.73×10 -20 cm 2,the ratiative lifetime is 226μs,thu s,the quantum efficiency is 49.4%.On the other hand ,the second harmonic genera tion (SHG) effect has been observed in Nd 3+ :β LaSc 3(BO 3) 4 crystal. In conclusion,Nd 3+ : β LaSc 3(BO 3) 4 crystal cae be regarded as a king of high efficiency self frequency laser material.展开更多
We present a study of the fabrication of monolayer MoS_2 on n-Si(111) substrates by modified thermal evaporation deposition and the optoelectrical properties of the resulting film. The as-grown MoS_2 ultrathin film is...We present a study of the fabrication of monolayer MoS_2 on n-Si(111) substrates by modified thermal evaporation deposition and the optoelectrical properties of the resulting film. The as-grown MoS_2 ultrathin film is about 10 nm thick, or about a few atomic layers of MoS_2. The film has a large optical absorption range of 300-700 nm and strong luminescence emission at 682 nm. The optical absorption range covered almost the entire ultraviolet to visible light range, which is very useful for making high-efficiency solar cells. Moreover, the MoS_2/Si heterojunction exhibited good rectification characteristics and excellent photovoltaic effects. The power conversion efficiency of the heterojunction device is about 1.79% under white light illumination of 10 m W/cm^2. The results show that the monolayer MoS_2 film will find many applications in high-efficiency optoelectronic devices.展开更多
The manganite perovskite polycrystal samples of (La1-xDyx)2/3Sr1/3MnO3 (x = 0, 0.1, 0.2, 0.35, and 0.5) doped with Dy were prepared by solid state reaction in atmosphere to measure their X-ray diffraction (XRD) ...The manganite perovskite polycrystal samples of (La1-xDyx)2/3Sr1/3MnO3 (x = 0, 0.1, 0.2, 0.35, and 0.5) doped with Dy were prepared by solid state reaction in atmosphere to measure their X-ray diffraction (XRD) patterns, scanning electric microscope (SEM) images, infrared absorption spectra, and microwave electromagnetic properties. The displacement of the XRD peaks of the samples was found, and the 2θ increases from 0.05o to 0.5o. The grains of undoped La2/3Sr1/3MnO3 not only have the greatest size, but also the most regular shape. The size of the grains decreases as the Dy doping content increases from 0 to 0.5. The infrared absorption spectra of all samples were measured at room temperature. An absorption peak corresponding to the stretching vibration mode of Mn-O bonds appears within the range of 591-629 cm-1. The absorption peak shifts from a higher frequency to a lower one with the decrease of the average ionic radius of A-site. The frequency de- pendence of microwave-absorbing properties, imaginary components of the complex magnetic permeability μ" and dielectric permeability ε" for all samples was measured at room temperature from 8 to 13 GHz. The results show that the loss of microwave absorption can be attrib- uted to both the magnetic and electric losses. The increase of Dy content not only enhances the microwave absorption but also causes the displacement of the absorption peaks.展开更多
We have performed a full numerical calculation of the Franz-Keldysh (FK) effect on magnetoexcitons in a bulk GaAs semiconductor. By employing an initial wlue method in combination with the application of a perfect m...We have performed a full numerical calculation of the Franz-Keldysh (FK) effect on magnetoexcitons in a bulk GaAs semiconductor. By employing an initial wlue method in combination with the application of a perfect matched layer, the numerical effort and storage size are dramatically reduced due to a significant reduction in both computed domain and number of base functions. In the absence of an electric field, the higher magnetoexcitonic peaks show distinct Fano lineshape due to the degeneracy with continuum states of the lower Landau levels. The magnetoexcitons that belong to the zeroth Landau level remain in bound states and lead to Lorentzian lineshape, because they are not degenerated with continuum states. In the presence of an electric field, the FK effect on each magnetoexcitonic resonance can be identified for high magnetic fields. However, for low magnetic fields, the FK oscillations dominate the spectrum structure in the vicinity of the bandgap edge and the magnetoexcitonic resonances dominate the spectrum structure of higher energies. In the moderate electric fields, the interplay of FK effect and magnetoexcitonic resonance leads to a complex and rich structure in the absorption spectrum.展开更多
Chip-sized alkali atom vapor cells with high hermeticity are successfully fabricated through deep silicon etching and two anodic bonding processes.A self-built absorption spectrum testing system is used to test the ab...Chip-sized alkali atom vapor cells with high hermeticity are successfully fabricated through deep silicon etching and two anodic bonding processes.A self-built absorption spectrum testing system is used to test the absorption spectra of the ru-bidium atoms in alkali atom vapor cells.The influence of silicon cavity size,filling amount of rubidium atoms and temperature on the absorption spectra of rubidium atom vapor in the atom vapor cells are studied in depth through a theoretical analysis.This study provides a reference for the design and preparation of high quality chip-sized atom vapor cells.展开更多
The stability of porphyra-334 in solutions of different pH values at different temperatures was studied. In high acidic conditions, below pH 3, the absorption maximum, λ max, of porphyra-334 shows hypsochromic shift ...The stability of porphyra-334 in solutions of different pH values at different temperatures was studied. In high acidic conditions, below pH 3, the absorption maximum, λ max, of porphyra-334 shows hypsochromic shift towards lower wavelength and the absorbance also has a light decrease. In high alkaline conditions of over pH 12, the absorbance of porphyra-334 decreases and an unknown compound with a peak maximum at 225 nm appears. The peak height of the unknown compound increases with the decrease of absorbance of porphyra-334. This might be related to the decomposition of porphyra-334. At room temperature, porphyra-334 solutions, except high alkaline solutions, are stable. Increasing the temperature, especially higher than 60℃, promotes the decomposition of porphyra-334 and causes the absorbance decrease both in basic and acidic solutions.展开更多
The absorption spectrum of the hemoglobin (Hb) in single riving intact red blood cell(RBC), exposed in 900 MHz radiofrequency electromagnetic wave (RF-EMW), was non-invasive,in situ, real-time measured by employ...The absorption spectrum of the hemoglobin (Hb) in single riving intact red blood cell(RBC), exposed in 900 MHz radiofrequency electromagnetic wave (RF-EMW), was non-invasive,in situ, real-time measured by employing a highly sensitive fast multi-channel microspectrophotometer system. Both the absorption intensity and site of intracellular Hb were altered after RBCs were exposed in 900 MHz RF-EMW with power density at 5 mW/cm^2. It was indicated that not only the concentration of Hb in living RBCs was decreased, but the molecular structure of Hb was changed by the RF-EMW action.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61571018 and 61531003).
文摘Micrometric-thin cells(MCs)with alkali vapor atoms have been valuable for research and applications of hyperfine Zeeman splitting and atomic magnetometers under strong magnetic fields.We theoretically and experimentally study the saturated absorption spectra using a 100-μm cesium MC,where the pump and probe beams are linearly polarized with mutually perpendicular polarizations,and the magnetic field is along the pump beam.Because of the distinctive thin chamber of the MC,crossover spectral lines in saturated absorption spectra are largely suppressed leading to clear splittings of hyperfine Zeeman transitions in experiments,and the effect of spatial magnetic field gradient is expected to be reduced.A calculation method is proposed to achieve good agreements between theoretical calculations and experimental results.This method successfully explains the suppression of crossover lines in MCs,as well as the effects of magnetic field direction,propagation and polarization directions of the pump/probe beam on saturated absorption spectrum.The saturated absorption spectrum with suppressed crossover lines is used for laser frequency stabilization,which may provide the potential value of MCs for high spatial resolution strong-field magnetometry with high sensitivity.
基金This research was funded by the Youth Foundation Project,Basic and Applied Research Foundation of Guangdong Province of China(2022A1515110780)China Postdoctoral Science Foundation(2023M743293)China Univerisity of Geosciences(Wuhan)Gemmological Institute research project(GICTXM-04-S202103).
文摘In gemmology,the term“Alexandrite effect”is used to describe colour change phenomenon when a gemstone is observed under different light sources,usually between daylight and incandescent light.The definition of the Alexandrite effect is constantly being broadened with new discovery of gem resource.The traditional definition of the Alexandrite effect attributing the colour change phenomenon to the presence of two maximum transmission regions and a maximum absorption region in the absorption spectra.In this study,7 blue spinels and 5 blue gemstones(including tanzanite,kyanite,fluorite,and 2 sapphires)showing the Alexandrite effect were investigated.The goal is to explain the cause of blue-to-violet Alexandrite effect and the spectral features causing such colour change.In the UV-Vis spectra,all samples showed a maximum absorption peak in the range of 534-610 nm,within the green region to orange region.The traditional explanation of green to red Alexandrite effect required a transmission window in the red region;however,some of our samples did not show this transmission window and the blue-to-violet Alexandrite effect was still visible.Therefore,it is incomplete to explain the mechanism of the Alexandrite effect according to their characteristic absorption spectra,a systematic study based on modern colour science and colour perception in human vision is required to elucidate the blue-to-violet Alexandrite effect.
基金This work was supported by the National Natural Science Foundation of China (No.10979042 and No.21073173), the National Key Basic Research Special Foundation of China (No.2007CB815204), and the Fundamental Research Funds for the Central Universities. Authors also would like to thank Prof. J. B. Nee to provide his experimental data for our reference.
文摘The absorption spectrum of the C1Ⅱ state of N2O molecule in the wavelength range of 142.5-147.5 nm has been measured under the jet-cooled condition, and the clear spectral features are displayed. A vibrational progression is observed with a frequency interval of about 500 cm-1. With the aid of potential energy surfaces (PES) of the low-lying electronic states of N2O, the vibrational progression is assigned as the bending mode of the repulsive C1Ⅱ state. From the Fourier transformation analysis, the recurrence period of the periodic orbit near the transition state region is derived to be 65 fs. Through the least-square Lorentzian fitting, the lifetimes of the resonance levels are estimated from their profile widths to be about 20 fs, which is shorter than the recurrence period. Therefore, a new explanation is suggested for the observed diffuse spectral structure, based on the behavior of dissociating N20 on PES of the C1Ⅱ state in the present excitation energy range.
文摘Borosilicate glass with high rare earth content was fabricated by traditional method. The influence of glass compositions and rare earth content on absorption spectra was examined and discussed. With increasing Sm2O3 content, the intensity of characteristic absorption peak is increased and the absorption peak is broadened. With increasing of the ratios of SiO2/B2O3 and Al2O3/SiO2, the broadening degree of absorption peak is increased. The experimental results provide basis for making special optical glasses which have the characteristics of high absorption for special wavelength laser and high transparence for visible light.
基金was supported by the National Natural Science Foundation of China under Grant No. U1330202 and 11204279the Foundation of Terahertz Research Center, CAEP under Grant No. T2014-005-0103
文摘The absorption spectrum of the cyclotrime-thylenetrinitramine (RDX) with four different particle sizes are measured in the frequency range from 0.1THz to 2.5THz by using the terahertz time-domain spectroscopy (THz-TDS), and the characteristic absorption peaks are acquired. All the samples are measured in a loose condition, which is very close to the real using environment of the RDX. The results show that the four kinds of samples have similar absorption peaks around the frequency of 0.82THz, 1.05 THz, 1.30THz, 1.46THz, 1.65THz, and 1.95THz. The sample with a large particle size obtains more peaks than the small one, while the peaks obtained from the sample with a small size are more protrudent. The reasons for these differences can be the refraction, scattering, and attenuation of the terahertz wave when it passes through the crystal samples. The theoretical terahertz spectrum of RDX was simulated by using density functional calculations, in which, the Becke & Perdew-Wang's functional is used in a double numerical plus polarization method (BP/DNP). Good agreements between the experimental and computed results show that the three peaks located in the frequency of 1.30THz, 1.48THz, and 1.96THz are caused respectively by the twisting of three-nitrogen heterocyclic, the symmetrical oscillations of the double nitro groups, and the oscillations of a single nitro group.
基金supported by the National Natural Science Foundation of China(21172161)
文摘UV-Vis spectrum and the third-order nonlinear optical properties of the chiral camphor-derived β-diketonate have been studied at the B3LYP/6-31G* level. The results showed that the introduction of electron-drawing group -CF3 and -C3F7 on β-diketonate made the strongest absorption peak red-shift and the lowest energy absorption blue-shied. Introduction of -OC2H5 on the benzene or pyridine ring made the lowest energy absorption blue-shift. When the -C2H3 was introduced on the benzene or pyridine ring, the lowest energy absorption was red-shifted. Introduction of electron-donating group on β-diketonate can enlarge their nonlinear optical properties. On the contrary, the introduction of electron-drawing group dropped it down.
文摘In the infrared spectrum absorbed type gas concentration sensor,voltage signal obtained from the two-channel thermopile infrared detector TPS2534 is very weak.In order to solve this problem,the authors have established the structure of the sensor and designed weak signal detecting circuit of the sensor based on infrared spectrum absorption principle,differential de-noising principle and weak signal detecting principle.The authors have made experiments using CH4 gas.The results show that the circuit can remove noise effectively and detect weak electrical signal obtained from the detector.
文摘Organic semiconductoe 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) has been synthetized with 1,8-naphthalic anhydride using chemical method.X-ray diffraction spectrum shows that it is monoclinic.Visible absorption spectrum shows that its gap band is 2.2 eV with singlet exciton bandwidth of 0.9 eV.
基金supported by the National Natural Science Foundation of China(Nos.22073042,22122302,U1932147 to Xixi Hu,and No.21733006 to Daiqian Xie)the Fundamental Research Funds for the central universities(No.14380020)。
文摘In this work,high-fidelity full-dimensional potential energy surfaces(PESs)of the ground(X^(2)A′)and first doublet excited(A^(2)A″)electronic states of HCO were constructed using neural network method.In total,4624 high-level ab initio points have been used which were calculated at Davidson corrected internally contracted MRCI-F12 level of theory with a quite large basis set(ACV5Z)without any scaling scheme.Compared with the results obtained from the scaled PESs of Ndenguéet al.,the absorption spectrum based on our PESs has slightly larger intensity,and the peak positions are shifted to smaller energy for dozens of wavenumbers.It is indicated that the scaling of potential energy may make some unpredictable difference on the dynamical results.However,the resonance energies based on those scaled PESs are slightly closer to the current available experimental values than ours.Nevertheless,the unscaled high-level PESs developed in this work might provide a platform for further experimental and theoretical photodissociation and collisional dynamic studies for HCO system.
基金Supported by a grant from the Education Office of Henan Province in China (No.12A140013)
文摘Objective: The aim of our study was to discovery the different cell cycle arrest effect after different densities HeLa cells treated with Trichostatin A (TSA). In addition, this study would find some important relationship between cycle arrest effect and UV absorption spectrum of cell. Methods: 0.2 IJM TSA was applied to act on HeLa cells of different density. Then, the cycle arrest effect and UV absorption spectrum of cells were investigated, which provide support to analyze the effect of TSA on cancer cells. Results: Cell cycle arrest effect in G0/G1 of the lower density cells was more obvious than that in other groups. The other discovery in this work was that the cellular UV absorption value was higher when the density of cultured cell was lower. Conclusion: This experiment would guide the clinical study on early or late stage cancer patients in the future. On the other hand, this work indicates when cells were arrested in G0/G1 phase, the cellular absorption value increased at the same time, so UV absorption spectrum could characterize the change of cell cycle.
基金National Natural Science Foundation of Chinagrant number:10172043+1 种基金International Science and Technology Cooperation Programgrant number:BZ2008060
文摘This paper presents a new method to study the interaction between tangerine peel and beer by absorption spectrum.The author explores the change laws and the differences of the absorbance on some wave band from the absorption spectrums of tangerine peel and the mixture of tangerine peel and beer. The results show that there is an obvious difference around 323 nm though the absorbance values of the two samples are almost similar in the most bands. The absorbance value of the mixture is obviously greater than that of tangerine peel at 276 nm in the spectrums, and there is a shift of the peak position in the absorption spectrum of the mixture, which shows the differences of the absorbance values and the peak positions of the two samples. Through comparing the characteristics of the two samples' absorption spectrums, a new method for researching new pharmacological action of tangerine peel is presented in this paper. The result indicates that the technology of spectrum analysis will play an important role in the research and development of Chinese herbal pharmacology and new pharmacology.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51132004,11474096 and 11604199the Science and Technology Commission of Shanghai Municipality under Grant No 14JC1401500the Higher Education Key Program of He'nan Province under Grant Nos 17A140025 and 16A140030
文摘The femtosecond pulse shaping technique has been shown to be an effective method to control the multi-photon absorption by the light–matter interaction. Previous studies mainly focused on the quantum coherent control of the multi-photon absorption by the phase, amplitude and polarization modulation, but the coherent features of the multi-photon absorption depending on the energy level structure, the laser spectrum bandwidth and laser central frequency still lack in-depth systematic research. In this work, we further explore the coherent features of the resonance-mediated two-photon absorption in a rubidium atom by varying the energy level structure, spectrum bandwidth and central frequency of the femtosecond laser field. The theoretical results show that the change of the intermediate state detuning can effectively influence the enhancement of the near-resonant part, which further affects the transform-limited (TL)-normalized final state population maximum. Moreover, as the laser spectrum bandwidth increases, the TL-normalized final state population maximum can be effectively enhanced due to the increase of the enhancement in the near-resonant part, but the TL-normalized final state population maximum is constant by varying the laser central frequency. These studies can provide a clear physical picture for understanding the coherent features of the resonance-mediated two-photon absorption, and can also provide a theoretical guidance for the future applications.
基金supported by the National Natural Science Foundation of China (Grant No. 61703025)。
文摘We demonstrate an experimental method for the in situ temperature measurement of atomic vapor using the saturated absorption spectrum. By separately manipulating the frequency of the pump and probe beams, the position of the crossover peaks can move along the spectrum. Different velocity classes of atoms contribute to the crossover during the movement. We study the relationship between the intensity change of peaks and vapor temperature. Our experimental result around room temperature shows a deviation of less than 0.3 K. Compared with traditional thermometry using absorption spectroscopy, higher accuracy can theoretically be achieved with real-time thermometry.
文摘There has been an increasing interest in the research of diode laser pumped sol id state lasers in recent years because of the rapid development of high power d iode laser.This paper reports the crystal growth and the spectral properties of low temperature phase Nd 3+ : β LaSc 3(BO 3) 4crystal.The low temp er ature phase β LaSc 3(BO 3) 4 crystal belongs to the rhombohedral with space group R 32 and cell parameters a =0.9819, c =0.7987mm, Z =3.The 5at.% Nd 3+ :β LaSc 3(BO 3) 4 crystal is only grown by the flux method.Nd 3+ :β LaSc 3(BO 3) 4 crystal with dimension of 43mm×32mm×15mm has been g rown by TSSG method.Its spectral properties have been investigated.The results show that the FWHM of absorption band at 808nm is 3.3nm,the fluorescence lifetime is 112μs,the emission cross section at 1063nm is 15.6×10 -20 cm 2.Based on J udd Ofelt theory,the spectral parameters were obtained:the parameters of line s trengths Ω λ are Ω 2=2.85×10 -20 cm 2, Ω 4=3.69×10 -20 cm 2, Ω 6=4.73×10 -20 cm 2,the ratiative lifetime is 226μs,thu s,the quantum efficiency is 49.4%.On the other hand ,the second harmonic genera tion (SHG) effect has been observed in Nd 3+ :β LaSc 3(BO 3) 4 crystal. In conclusion,Nd 3+ : β LaSc 3(BO 3) 4 crystal cae be regarded as a king of high efficiency self frequency laser material.
基金supported in parts by the National Natural Science Foundation of China (No. 60976071)the Scientific Project Program of Suzhou City (No. SYG201121)
文摘We present a study of the fabrication of monolayer MoS_2 on n-Si(111) substrates by modified thermal evaporation deposition and the optoelectrical properties of the resulting film. The as-grown MoS_2 ultrathin film is about 10 nm thick, or about a few atomic layers of MoS_2. The film has a large optical absorption range of 300-700 nm and strong luminescence emission at 682 nm. The optical absorption range covered almost the entire ultraviolet to visible light range, which is very useful for making high-efficiency solar cells. Moreover, the MoS_2/Si heterojunction exhibited good rectification characteristics and excellent photovoltaic effects. The power conversion efficiency of the heterojunction device is about 1.79% under white light illumination of 10 m W/cm^2. The results show that the monolayer MoS_2 film will find many applications in high-efficiency optoelectronic devices.
基金supported by the National Natural Science Foundation of China (No. 60561001)the Natural Science Foundation of Inner Mongolia Autonomous Region, China (No. 200408020105)+1 种基金the Program for New Century Excellent Talents in Universities (No. NCET-05-0272)College Science and Technology Re-search Project of Inner Mongolia Autonomous Region, China (No. NJ04094)
文摘The manganite perovskite polycrystal samples of (La1-xDyx)2/3Sr1/3MnO3 (x = 0, 0.1, 0.2, 0.35, and 0.5) doped with Dy were prepared by solid state reaction in atmosphere to measure their X-ray diffraction (XRD) patterns, scanning electric microscope (SEM) images, infrared absorption spectra, and microwave electromagnetic properties. The displacement of the XRD peaks of the samples was found, and the 2θ increases from 0.05o to 0.5o. The grains of undoped La2/3Sr1/3MnO3 not only have the greatest size, but also the most regular shape. The size of the grains decreases as the Dy doping content increases from 0 to 0.5. The infrared absorption spectra of all samples were measured at room temperature. An absorption peak corresponding to the stretching vibration mode of Mn-O bonds appears within the range of 591-629 cm-1. The absorption peak shifts from a higher frequency to a lower one with the decrease of the average ionic radius of A-site. The frequency de- pendence of microwave-absorbing properties, imaginary components of the complex magnetic permeability μ" and dielectric permeability ε" for all samples was measured at room temperature from 8 to 13 GHz. The results show that the loss of microwave absorption can be attrib- uted to both the magnetic and electric losses. The increase of Dy content not only enhances the microwave absorption but also causes the displacement of the absorption peaks.
基金Project supported by the Major Program of the National Natural Science Foundation of China (Grant No 10390160), and the National Natural Science Foundation of China (Grant No 30370420).
文摘We have performed a full numerical calculation of the Franz-Keldysh (FK) effect on magnetoexcitons in a bulk GaAs semiconductor. By employing an initial wlue method in combination with the application of a perfect matched layer, the numerical effort and storage size are dramatically reduced due to a significant reduction in both computed domain and number of base functions. In the absence of an electric field, the higher magnetoexcitonic peaks show distinct Fano lineshape due to the degeneracy with continuum states of the lower Landau levels. The magnetoexcitons that belong to the zeroth Landau level remain in bound states and lead to Lorentzian lineshape, because they are not degenerated with continuum states. In the presence of an electric field, the FK effect on each magnetoexcitonic resonance can be identified for high magnetic fields. However, for low magnetic fields, the FK oscillations dominate the spectrum structure in the vicinity of the bandgap edge and the magnetoexcitonic resonances dominate the spectrum structure of higher energies. In the moderate electric fields, the interplay of FK effect and magnetoexcitonic resonance leads to a complex and rich structure in the absorption spectrum.
文摘Chip-sized alkali atom vapor cells with high hermeticity are successfully fabricated through deep silicon etching and two anodic bonding processes.A self-built absorption spectrum testing system is used to test the absorption spectra of the ru-bidium atoms in alkali atom vapor cells.The influence of silicon cavity size,filling amount of rubidium atoms and temperature on the absorption spectra of rubidium atom vapor in the atom vapor cells are studied in depth through a theoretical analysis.This study provides a reference for the design and preparation of high quality chip-sized atom vapor cells.
基金supported by the Natural Science Foundation of Qingdao(No.04-2-JZ-110).
文摘The stability of porphyra-334 in solutions of different pH values at different temperatures was studied. In high acidic conditions, below pH 3, the absorption maximum, λ max, of porphyra-334 shows hypsochromic shift towards lower wavelength and the absorbance also has a light decrease. In high alkaline conditions of over pH 12, the absorbance of porphyra-334 decreases and an unknown compound with a peak maximum at 225 nm appears. The peak height of the unknown compound increases with the decrease of absorbance of porphyra-334. This might be related to the decomposition of porphyra-334. At room temperature, porphyra-334 solutions, except high alkaline solutions, are stable. Increasing the temperature, especially higher than 60℃, promotes the decomposition of porphyra-334 and causes the absorbance decrease both in basic and acidic solutions.
基金This work was supported by Guangdong Natural Science Foundation(Project No.010420)Natural Science Foundation of Jinan University.
文摘The absorption spectrum of the hemoglobin (Hb) in single riving intact red blood cell(RBC), exposed in 900 MHz radiofrequency electromagnetic wave (RF-EMW), was non-invasive,in situ, real-time measured by employing a highly sensitive fast multi-channel microspectrophotometer system. Both the absorption intensity and site of intracellular Hb were altered after RBCs were exposed in 900 MHz RF-EMW with power density at 5 mW/cm^2. It was indicated that not only the concentration of Hb in living RBCs was decreased, but the molecular structure of Hb was changed by the RF-EMW action.