Background:The compound Luteolin-7-rutinoside(L7R)is a flavone derivative of luteolin,predominantly identified in plant species belonging to the families Asteraceae.Conversely,Myristic acid is characterized by its str...Background:The compound Luteolin-7-rutinoside(L7R)is a flavone derivative of luteolin,predominantly identified in plant species belonging to the families Asteraceae.Conversely,Myristic acid is characterized by its structure as a 14-carbon,unsaturated fatty acid.In this investigation,we endeavor to elucidate the putative mechanisms underlying the therapeutic effects of Myristic Acid and Luteolin 7-rutinoside in the context of oral cancer treatment,employing network pharmacology coupled with molecular docking methodologies.Methods:The protein targets of Myristic Acid and Luteolin 7-rutinoside were identified through a search on the Swiss Target Database.Subsequently,a compound-target network was constructed using Cytoscape 3.9.1.Targets associated with OC were retrieved from the OMIM and GeneCards databases.The overlap between compound targets and OC-related targets was determined,and the resulting shared targets were subjected to protein-protein interaction(PPI)network analysis using the STRING database.Additionally,gene ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analyses were conducted on the identified targets.Molecular docking were performed to investigate the interactions between the core target and the active compound.Results:The component target network comprises 103 nodes and 102 edges.Among the proteins in the protein-protein interaction(PPI)network,those with higher degrees are TNF,PPARG,and TP53.Analysis through Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways indicates that the treatment of OC with Myristic Acid and Luteolin 7-rutinoside primarily involves the regulation of miRNA transcription and inflammatory response.The identified signaling pathways include Pathways in cancer,PPAR signaling pathway,EGFR signaling pathway,and TNF signaling pathway.Molecular docking studies reveal that Luteolin 7-rutinoside and Myristic acid exhibit higher affinity towards TNF,PPARG,TP53,and EGFR.Conclusion:This study reveals the potential molecular mechanism of Myristic Acid and Luteolin 7-rutinoside in the treatment of oral cancer,and provides a reference for subsequent basic research.展开更多
对采自湖北神农架的神农香菊(D end ranthem a ind icum(L.)D es M on l.var.arom a ticum Q.H.L iu et S.F.Zhang var.nov.)的化学成分进行研究,从中分离到5个化合物,利用波谱分析技术和文献对照确定了其结构,分别鉴定为木犀草素(lu te...对采自湖北神农架的神农香菊(D end ranthem a ind icum(L.)D es M on l.var.arom a ticum Q.H.L iu et S.F.Zhang var.nov.)的化学成分进行研究,从中分离到5个化合物,利用波谱分析技术和文献对照确定了其结构,分别鉴定为木犀草素(lu teo lin),木犀黄酮甙(lu teo lin-7-O--βg lucopyranos ide),刺槐素甙(acacetin-7-rham nos idg luos ide),1-单山艹俞酸甘油酯(g lycery l-1-m onobehenate),山艹俞酸(behen ic ac id)。展开更多
Two new flavonoid glycosides were isolated from the flowering heads of Chrysanthemum morifolium. Their structures were determined to be luteolin 4'-methoxy-7- O-(6"-O-acetyl)-β-D-glucopyranoside (1) and acaceti...Two new flavonoid glycosides were isolated from the flowering heads of Chrysanthemum morifolium. Their structures were determined to be luteolin 4'-methoxy-7- O-(6"-O-acetyl)-β-D-glucopyranoside (1) and acacetin 7-O-(3"-O-acetyl)-β-D-glucopyranoside (2) by means of 1H and 13C NMR spectroscopic analysis, including 2D NMR technique.展开更多
文摘Background:The compound Luteolin-7-rutinoside(L7R)is a flavone derivative of luteolin,predominantly identified in plant species belonging to the families Asteraceae.Conversely,Myristic acid is characterized by its structure as a 14-carbon,unsaturated fatty acid.In this investigation,we endeavor to elucidate the putative mechanisms underlying the therapeutic effects of Myristic Acid and Luteolin 7-rutinoside in the context of oral cancer treatment,employing network pharmacology coupled with molecular docking methodologies.Methods:The protein targets of Myristic Acid and Luteolin 7-rutinoside were identified through a search on the Swiss Target Database.Subsequently,a compound-target network was constructed using Cytoscape 3.9.1.Targets associated with OC were retrieved from the OMIM and GeneCards databases.The overlap between compound targets and OC-related targets was determined,and the resulting shared targets were subjected to protein-protein interaction(PPI)network analysis using the STRING database.Additionally,gene ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analyses were conducted on the identified targets.Molecular docking were performed to investigate the interactions between the core target and the active compound.Results:The component target network comprises 103 nodes and 102 edges.Among the proteins in the protein-protein interaction(PPI)network,those with higher degrees are TNF,PPARG,and TP53.Analysis through Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways indicates that the treatment of OC with Myristic Acid and Luteolin 7-rutinoside primarily involves the regulation of miRNA transcription and inflammatory response.The identified signaling pathways include Pathways in cancer,PPAR signaling pathway,EGFR signaling pathway,and TNF signaling pathway.Molecular docking studies reveal that Luteolin 7-rutinoside and Myristic acid exhibit higher affinity towards TNF,PPARG,TP53,and EGFR.Conclusion:This study reveals the potential molecular mechanism of Myristic Acid and Luteolin 7-rutinoside in the treatment of oral cancer,and provides a reference for subsequent basic research.
文摘对采自湖北神农架的神农香菊(D end ranthem a ind icum(L.)D es M on l.var.arom a ticum Q.H.L iu et S.F.Zhang var.nov.)的化学成分进行研究,从中分离到5个化合物,利用波谱分析技术和文献对照确定了其结构,分别鉴定为木犀草素(lu teo lin),木犀黄酮甙(lu teo lin-7-O--βg lucopyranos ide),刺槐素甙(acacetin-7-rham nos idg luos ide),1-单山艹俞酸甘油酯(g lycery l-1-m onobehenate),山艹俞酸(behen ic ac id)。
基金supported by the Natural Science Foundation of Jiangsu Science and Technology Department(No.BK2001219)
文摘Two new flavonoid glycosides were isolated from the flowering heads of Chrysanthemum morifolium. Their structures were determined to be luteolin 4'-methoxy-7- O-(6"-O-acetyl)-β-D-glucopyranoside (1) and acacetin 7-O-(3"-O-acetyl)-β-D-glucopyranoside (2) by means of 1H and 13C NMR spectroscopic analysis, including 2D NMR technique.