Proximal gradient descent and its accelerated version are resultful methods for solving the sum of smooth and non-smooth problems. When the smooth function can be represented as a sum of multiple functions, the stocha...Proximal gradient descent and its accelerated version are resultful methods for solving the sum of smooth and non-smooth problems. When the smooth function can be represented as a sum of multiple functions, the stochastic proximal gradient method performs well. However, research on its accelerated version remains unclear. This paper proposes a proximal stochastic accelerated gradient (PSAG) method to address problems involving a combination of smooth and non-smooth components, where the smooth part corresponds to the average of multiple block sums. Simultaneously, most of convergence analyses hold in expectation. To this end, under some mind conditions, we present an almost sure convergence of unbiased gradient estimation in the non-smooth setting. Moreover, we establish that the minimum of the squared gradient mapping norm arbitrarily converges to zero with probability one.展开更多
Anderson acceleration(AA)is an extrapolation technique designed to speed up fixed-point iterations.For optimization problems,we propose a novel algorithm by combining the AA with the energy adaptive gradient method(AE...Anderson acceleration(AA)is an extrapolation technique designed to speed up fixed-point iterations.For optimization problems,we propose a novel algorithm by combining the AA with the energy adaptive gradient method(AEGD)[arXiv:2010.05109].The feasibility of our algorithm is ensured in light of the convergence theory for AEGD,though it is not a fixed-point iteration.We provide rigorous convergence rates of AA for gradient descent(GD)by an acceleration factor of the gain at each implementation of AA-GD.Our experimental results show that the proposed AA-AEGD algorithm requires little tuning of hyperparameters and exhibits superior fast convergence.展开更多
Gradient ultra-fine grained surface layer in 6063 aluminum alloy was obtained by means of a novel surface self-nanocrystallization technique,namely rotational accelerated shot peening(RASP)treatment.The average grain ...Gradient ultra-fine grained surface layer in 6063 aluminum alloy was obtained by means of a novel surface self-nanocrystallization technique,namely rotational accelerated shot peening(RASP)treatment.The average grain sizes along the vertical section vary from hundreds of nanometers in the top surface to micrometers in the matrix.By using orthogonal experimental design to compare roughness values and hardness values,we synthesized the processing parameters to obtain sample of smaller roughness values and higher hardness.展开更多
An S-band high-gradient accelerating structure is designed for a proton therapy linear accelerator(linac)to accommodate the new development of compact,singleroom facilities and ultra-high dose rate(FLASH)radiotherapy....An S-band high-gradient accelerating structure is designed for a proton therapy linear accelerator(linac)to accommodate the new development of compact,singleroom facilities and ultra-high dose rate(FLASH)radiotherapy.To optimize the design,an efficient optimization scheme is applied to improve the simulation efficiency.An S-band accelerating structure with 2856 MHz is designed with a low beta of 0.38,which is a difficult structure to achieve for a linac accelerating proton particles from 70 to 250 MeV,as a high gradient up to 50 MV/m is required.A special design involving a dual-feed coupler eliminates the dipole field effect.This paper presents all the details pertaining to the design,fabrication,and cold test results of the S-band high-gradient accelerating structure.展开更多
Two 650 MHz single-cell superconducting radio-frequency(SRF)cavities used for the Circular Electron Positron Collider(CEPC)were studied to achieve a high accelerating gradient(E_(acc))and high intrinsic quality factor...Two 650 MHz single-cell superconducting radio-frequency(SRF)cavities used for the Circular Electron Positron Collider(CEPC)were studied to achieve a high accelerating gradient(E_(acc))and high intrinsic quality factor(Q_(0)).The 650 MHz single-cell cavities were subjected to a combination of buffered chemical polishing(BCP)and electropolishing(EP),and their E_(acc) exceeded40 MV/m.Such a high E_(acc) may result from the cold EP with more uniform removal.BCP is easy,cheap,and rough,whereas EP is complicated,expensive,and precise Therefore,the combination of BCP and EP investigated in this study is suitable for surface treatments of mass SRF cavities.Medium temperature(mid-T)furnace baking was also conducted,which demonstrated an ultrahigh Q_(0) of 8×10^(10) at 22 MV/m for both cavities,and an extremely low BCS resistance(R_(BCS))of~1.0 nΩwas achieved a2.0 K.展开更多
X-band high-gradient linear accelerators are a challenging and attractive technology for compact electron linear-accelerator facilities.The Very Compact Inverse Compton Scattering Gamma-ray Source(VIGAS)program at Tsi...X-band high-gradient linear accelerators are a challenging and attractive technology for compact electron linear-accelerator facilities.The Very Compact Inverse Compton Scattering Gamma-ray Source(VIGAS)program at Tsinghua University will utilize X-band high-gradient accelerating structures to boost the electron beam from 50 to 350 MeV over a short distance.A constant-impedance traveling-wave structure consisting of 72 cells working in the 2π/3 mode was designed and fabricated for this project.Precise tuning and detailed measurements were successfully applied to the structure.After 180 h of conditioning in the Tsinghua high-power test stand,the structure reached a target gradient of 80 MV/m.The breakdown rate versus gradient of this structure was measured and analyzed.展开更多
A general solution of the electrostatic potential that determines the maximum light-ion energy is derived for the test-particle acceleration model by taking into account the influence of the substrate-ion density grad...A general solution of the electrostatic potential that determines the maximum light-ion energy is derived for the test-particle acceleration model by taking into account the influence of the substrate-ion density gradient. It is shown that the substrate-ion density structure is also dependent on laser pulse duration. In the picosecond or sub-picosecond regime, the decreasing density gradient of the substrate-ions leads to an evident reduction in the acceleration efficiency of the light-ions. However, this kind of influence is negligible in the ultrashort regime.展开更多
We present a first on-chip positron accelerator based on dielectric laser acceleration.This innovative approach significantly reduces the physical dimensions of the positron acceleration apparatus,enhancing its feasib...We present a first on-chip positron accelerator based on dielectric laser acceleration.This innovative approach significantly reduces the physical dimensions of the positron acceleration apparatus,enhancing its feasibility for diverse applications.By utilizing a stacked acceleration structure and far-infrared laser technology,we are able to achieve a seven-stage acceleration structure that surpasses the distance and energy gain of using the previous dielectric laser acceleration methods.Additionally,we are able to compress the positron beam to an ultrafast sub-femtosecond scale during the acceleration process,compared with the traditional methods,the positron beam is compressed to a greater extent.We also demonstrate the robustness of the stacked acceleration structure through the successful acceleration of the positron beam.展开更多
In this paper,an accelerated proximal gradient algorithm is proposed for Hankel tensor completion problems.In our method,the iterative completion tensors generated by the new algorithm keep Hankel structure based on p...In this paper,an accelerated proximal gradient algorithm is proposed for Hankel tensor completion problems.In our method,the iterative completion tensors generated by the new algorithm keep Hankel structure based on projection on the Hankel tensor set.Moreover,due to the special properties of Hankel structure,using the fast singular value thresholding operator of the mode-s unfolding of a Hankel tensor can decrease the computational cost.Meanwhile,the convergence of the new algorithm is discussed under some reasonable conditions.Finally,the numerical experiments show the effectiveness of the proposed algorithm.展开更多
In this work, a mathematical model is established to describe the axial variation of the characteristic flow parameters (particle velocity, solid holdup and pressure gradient) in a downer. An empirical correlation is ...In this work, a mathematical model is established to describe the axial variation of the characteristic flow parameters (particle velocity, solid holdup and pressure gradient) in a downer. An empirical correlation is developed to estimate the particle velocity at the constant velocity section. Experimental investigations are made to validate the downer model. The model simulations have a good agreement with experimental data. Moreover, a formula is derived to predict the first acceleration section length and the whole acceleration section length.展开更多
This paper describes the design and preliminary test of the low-level radio frequency(LLRF)part of the C band high-gradient test facility for the Shanghai Soft X-ray Free-Electron Laser(SXFEL)-Linear Accelerator(LINAC...This paper describes the design and preliminary test of the low-level radio frequency(LLRF)part of the C band high-gradient test facility for the Shanghai Soft X-ray Free-Electron Laser(SXFEL)-Linear Accelerator(LINAC).Before installation,the accelerating structures should be tested and conditioned.During the conditioning process,breakdown detection is needed to protect the accelerating structures and klystron from damage.The PCI extensions for instrumentation-based LLRF system and auto-conditioning algorithm are designed and applied in the LLRF part of the C band high-gradient test facility.Three C band accelerating structures and 1 pulse compressor have completed conditioning and were installed in the SXFEL-LINAC.展开更多
The oscillating natural convection in the presence of transverse magnetic field with time depending pressure gradient is studied. The analysis of the problem is carried out by assuming that the fluid is flowing in a...The oscillating natural convection in the presence of transverse magnetic field with time depending pressure gradient is studied. The analysis of the problem is carried out by assuming that the fluid is flowing in a parallel plate configuration. The emphasis is on low frequency oscillating convective flows induced by g-jitter associated with micro gravity because of their importance to the space processing materials. A general solution for an oscillating flow in the presence of transverse magnetic field is carried out. Some special cases of the oscillating flow and its response to an applied magnetic field are performed. It was observed that the behavior of oscillating free convective flows depends on frequency, amplitude of the driving buoyancy forces, temperature gradient,magnetic field and the electric conditions of the channel walls. In the absence of magnetic field, buoyancy force plays a predominant role in driving the oscillatory flow pattern, and velocity magnitude is also affected by temperature gradients. To suppress the oscillating flow external magnetic field can be used. It is also found that the reduction of the velocity is inversely proportional to the square of the applied magnetic field with conducting wall but directly proportional to the inverse of the magnetic field with insulating wall. Detailed calculations and computational results are also carried out to depict the real situation.展开更多
The average acceleration approach was applied to recover a gravity field model Model;CA from GOCE precise science orbits from September 2 to November 2, 2010, and furthermore a so called sequential least square adjust...The average acceleration approach was applied to recover a gravity field model Model;CA from GOCE precise science orbits from September 2 to November 2, 2010, and furthermore a so called sequential least square adjustment was used. The model was compared with other gravity field models based on CHAMP, GRACE and GOCE. The result shows that the model is superior to gravity field based on CHAMP, and with higher accuracy than other international gravity field models based on only GOCE data before 80 degree. The degree geoid height of Model;CA reaches 3cm up to 90 degree and order.展开更多
We proposed an improved graphics processing unit(GPU)acceleration approach for three-dimensional structural topology optimization using the element-free Galerkin(EFG)method.This method can effectively eliminate the ra...We proposed an improved graphics processing unit(GPU)acceleration approach for three-dimensional structural topology optimization using the element-free Galerkin(EFG)method.This method can effectively eliminate the race condition under parallelization.We established a structural topology optimization model by combining the EFG method and the solid isotropic microstructures with penalization model.We explored the GPU parallel algorithm of assembling stiffness matrix,solving discrete equation,analyzing sensitivity,and updating design variables in detail.We also proposed a node pair-wise method for assembling the stiffnessmatrix and a node-wise method for sensitivity analysis to eliminate race conditions during the parallelization.Furthermore,we investigated the effects of the thread block size,the number of degrees of freedom,and the convergence error of preconditioned conjugate gradient(PCG)on GPU computing performance.Finally,the results of the three numerical examples demonstrated the validity of the proposed approach and showed the significant acceleration of structural topology optimization.To save the cost of optimization calculation,we proposed the appropriate thread block size and the convergence error of the PCG method.展开更多
Dielectric laser accelerators(DLAs)are considered promising candidates for on-chip particle accelerators that can achieve high acceleration gradients.This study explores various combinations of dielectric materials an...Dielectric laser accelerators(DLAs)are considered promising candidates for on-chip particle accelerators that can achieve high acceleration gradients.This study explores various combinations of dielectric materials and accelerated structures based on the inverse Cherenkov effect.The designs utilize conventional processing methods and laser parameters currently in use.We optimize the structural model to enhance the gradient of acceleration and the electron energy gain.To achieve higher acceleration gradients and energy gains,the selection of materials and structures should be based on the initial electron energy.Furthermore,we observed that the variation of the acceleration gradient of the material is different at different initial electron energies.These findings suggest that on-chip accelerators are feasible with the help of these structures and materials.展开更多
文摘Proximal gradient descent and its accelerated version are resultful methods for solving the sum of smooth and non-smooth problems. When the smooth function can be represented as a sum of multiple functions, the stochastic proximal gradient method performs well. However, research on its accelerated version remains unclear. This paper proposes a proximal stochastic accelerated gradient (PSAG) method to address problems involving a combination of smooth and non-smooth components, where the smooth part corresponds to the average of multiple block sums. Simultaneously, most of convergence analyses hold in expectation. To this end, under some mind conditions, we present an almost sure convergence of unbiased gradient estimation in the non-smooth setting. Moreover, we establish that the minimum of the squared gradient mapping norm arbitrarily converges to zero with probability one.
基金partially supported by the National Science Foundation under(Grant DMS No.1812666)。
文摘Anderson acceleration(AA)is an extrapolation technique designed to speed up fixed-point iterations.For optimization problems,we propose a novel algorithm by combining the AA with the energy adaptive gradient method(AEGD)[arXiv:2010.05109].The feasibility of our algorithm is ensured in light of the convergence theory for AEGD,though it is not a fixed-point iteration.We provide rigorous convergence rates of AA for gradient descent(GD)by an acceleration factor of the gain at each implementation of AA-GD.Our experimental results show that the proposed AA-AEGD algorithm requires little tuning of hyperparameters and exhibits superior fast convergence.
基金funded by NSFC(Grant No.51301092)the National Key R&D Program of China(Grant No.2017YFA0204403)Open Research Fund of Science and Technology on High Strength Structural Materials Laboratory(No.O2016006).
文摘Gradient ultra-fine grained surface layer in 6063 aluminum alloy was obtained by means of a novel surface self-nanocrystallization technique,namely rotational accelerated shot peening(RASP)treatment.The average grain sizes along the vertical section vary from hundreds of nanometers in the top surface to micrometers in the matrix.By using orthogonal experimental design to compare roughness values and hardness values,we synthesized the processing parameters to obtain sample of smaller roughness values and higher hardness.
基金This work was supported by the Alliance of International Science Organizations(No.ANSO-CR-KP-2020-16).
文摘An S-band high-gradient accelerating structure is designed for a proton therapy linear accelerator(linac)to accommodate the new development of compact,singleroom facilities and ultra-high dose rate(FLASH)radiotherapy.To optimize the design,an efficient optimization scheme is applied to improve the simulation efficiency.An S-band accelerating structure with 2856 MHz is designed with a low beta of 0.38,which is a difficult structure to achieve for a linac accelerating proton particles from 70 to 250 MeV,as a high gradient up to 50 MV/m is required.A special design involving a dual-feed coupler eliminates the dipole field effect.This paper presents all the details pertaining to the design,fabrication,and cold test results of the S-band high-gradient accelerating structure.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB25000000)the National Natural Science Foundation of China(No.12075270)the Platform of Advanced Photon Source Technology R&D。
文摘Two 650 MHz single-cell superconducting radio-frequency(SRF)cavities used for the Circular Electron Positron Collider(CEPC)were studied to achieve a high accelerating gradient(E_(acc))and high intrinsic quality factor(Q_(0)).The 650 MHz single-cell cavities were subjected to a combination of buffered chemical polishing(BCP)and electropolishing(EP),and their E_(acc) exceeded40 MV/m.Such a high E_(acc) may result from the cold EP with more uniform removal.BCP is easy,cheap,and rough,whereas EP is complicated,expensive,and precise Therefore,the combination of BCP and EP investigated in this study is suitable for surface treatments of mass SRF cavities.Medium temperature(mid-T)furnace baking was also conducted,which demonstrated an ultrahigh Q_(0) of 8×10^(10) at 22 MV/m for both cavities,and an extremely low BCS resistance(R_(BCS))of~1.0 nΩwas achieved a2.0 K.
基金supported by the National Natural Science Foundation of China (Nos. 11922504 and 12027902)
文摘X-band high-gradient linear accelerators are a challenging and attractive technology for compact electron linear-accelerator facilities.The Very Compact Inverse Compton Scattering Gamma-ray Source(VIGAS)program at Tsinghua University will utilize X-band high-gradient accelerating structures to boost the electron beam from 50 to 350 MeV over a short distance.A constant-impedance traveling-wave structure consisting of 72 cells working in the 2π/3 mode was designed and fabricated for this project.Precise tuning and detailed measurements were successfully applied to the structure.After 180 h of conditioning in the Tsinghua high-power test stand,the structure reached a target gradient of 80 MV/m.The breakdown rate versus gradient of this structure was measured and analyzed.
基金supported by the National Natural Science Foundation of China (Grant No. 10734080)the National Basic Research Program of China (Grant No. 2006CB806000)+1 种基金the Chinese Academy of Sciences,the Shanghai Commission of Science and Technology (Grant Nos. 06DZ22015 and 0652nm005)the Hunan Provincial Natural Science Foundation of China (GrantNo. 09JJ3012)
文摘A general solution of the electrostatic potential that determines the maximum light-ion energy is derived for the test-particle acceleration model by taking into account the influence of the substrate-ion density gradient. It is shown that the substrate-ion density structure is also dependent on laser pulse duration. In the picosecond or sub-picosecond regime, the decreasing density gradient of the substrate-ions leads to an evident reduction in the acceleration efficiency of the light-ions. However, this kind of influence is negligible in the ultrashort regime.
基金supported by the National Natural Science Foundation of China(Grant No.11975214).
文摘We present a first on-chip positron accelerator based on dielectric laser acceleration.This innovative approach significantly reduces the physical dimensions of the positron acceleration apparatus,enhancing its feasibility for diverse applications.By utilizing a stacked acceleration structure and far-infrared laser technology,we are able to achieve a seven-stage acceleration structure that surpasses the distance and energy gain of using the previous dielectric laser acceleration methods.Additionally,we are able to compress the positron beam to an ultrafast sub-femtosecond scale during the acceleration process,compared with the traditional methods,the positron beam is compressed to a greater extent.We also demonstrate the robustness of the stacked acceleration structure through the successful acceleration of the positron beam.
文摘In this paper,an accelerated proximal gradient algorithm is proposed for Hankel tensor completion problems.In our method,the iterative completion tensors generated by the new algorithm keep Hankel structure based on projection on the Hankel tensor set.Moreover,due to the special properties of Hankel structure,using the fast singular value thresholding operator of the mode-s unfolding of a Hankel tensor can decrease the computational cost.Meanwhile,the convergence of the new algorithm is discussed under some reasonable conditions.Finally,the numerical experiments show the effectiveness of the proposed algorithm.
基金the National Program of Basic Research (No. G1999022103) the National Natural Science Foundation of China (No. 29936090).
文摘In this work, a mathematical model is established to describe the axial variation of the characteristic flow parameters (particle velocity, solid holdup and pressure gradient) in a downer. An empirical correlation is developed to estimate the particle velocity at the constant velocity section. Experimental investigations are made to validate the downer model. The model simulations have a good agreement with experimental data. Moreover, a formula is derived to predict the first acceleration section length and the whole acceleration section length.
基金This work was supported by the National Key R&D Program of China(No.2018YFF0109203).
文摘This paper describes the design and preliminary test of the low-level radio frequency(LLRF)part of the C band high-gradient test facility for the Shanghai Soft X-ray Free-Electron Laser(SXFEL)-Linear Accelerator(LINAC).Before installation,the accelerating structures should be tested and conditioned.During the conditioning process,breakdown detection is needed to protect the accelerating structures and klystron from damage.The PCI extensions for instrumentation-based LLRF system and auto-conditioning algorithm are designed and applied in the LLRF part of the C band high-gradient test facility.Three C band accelerating structures and 1 pulse compressor have completed conditioning and were installed in the SXFEL-LINAC.
文摘The oscillating natural convection in the presence of transverse magnetic field with time depending pressure gradient is studied. The analysis of the problem is carried out by assuming that the fluid is flowing in a parallel plate configuration. The emphasis is on low frequency oscillating convective flows induced by g-jitter associated with micro gravity because of their importance to the space processing materials. A general solution for an oscillating flow in the presence of transverse magnetic field is carried out. Some special cases of the oscillating flow and its response to an applied magnetic field are performed. It was observed that the behavior of oscillating free convective flows depends on frequency, amplitude of the driving buoyancy forces, temperature gradient,magnetic field and the electric conditions of the channel walls. In the absence of magnetic field, buoyancy force plays a predominant role in driving the oscillatory flow pattern, and velocity magnitude is also affected by temperature gradients. To suppress the oscillating flow external magnetic field can be used. It is also found that the reduction of the velocity is inversely proportional to the square of the applied magnetic field with conducting wall but directly proportional to the inverse of the magnetic field with insulating wall. Detailed calculations and computational results are also carried out to depict the real situation.
基金supported by the Fundamental Research Funds for the Central Universities(SWJTU12BR012)
文摘The average acceleration approach was applied to recover a gravity field model Model;CA from GOCE precise science orbits from September 2 to November 2, 2010, and furthermore a so called sequential least square adjustment was used. The model was compared with other gravity field models based on CHAMP, GRACE and GOCE. The result shows that the model is superior to gravity field based on CHAMP, and with higher accuracy than other international gravity field models based on only GOCE data before 80 degree. The degree geoid height of Model;CA reaches 3cm up to 90 degree and order.
基金This work is supported by the National Natural Science Foundation of China(Nos.51875493,51975503,11802261)The financial support to the first author is gratefully acknowledged.
文摘We proposed an improved graphics processing unit(GPU)acceleration approach for three-dimensional structural topology optimization using the element-free Galerkin(EFG)method.This method can effectively eliminate the race condition under parallelization.We established a structural topology optimization model by combining the EFG method and the solid isotropic microstructures with penalization model.We explored the GPU parallel algorithm of assembling stiffness matrix,solving discrete equation,analyzing sensitivity,and updating design variables in detail.We also proposed a node pair-wise method for assembling the stiffnessmatrix and a node-wise method for sensitivity analysis to eliminate race conditions during the parallelization.Furthermore,we investigated the effects of the thread block size,the number of degrees of freedom,and the convergence error of preconditioned conjugate gradient(PCG)on GPU computing performance.Finally,the results of the three numerical examples demonstrated the validity of the proposed approach and showed the significant acceleration of structural topology optimization.To save the cost of optimization calculation,we proposed the appropriate thread block size and the convergence error of the PCG method.
基金the National Natural Science Foundation of China(Grant No.11975214)。
文摘Dielectric laser accelerators(DLAs)are considered promising candidates for on-chip particle accelerators that can achieve high acceleration gradients.This study explores various combinations of dielectric materials and accelerated structures based on the inverse Cherenkov effect.The designs utilize conventional processing methods and laser parameters currently in use.We optimize the structural model to enhance the gradient of acceleration and the electron energy gain.To achieve higher acceleration gradients and energy gains,the selection of materials and structures should be based on the initial electron energy.Furthermore,we observed that the variation of the acceleration gradient of the material is different at different initial electron energies.These findings suggest that on-chip accelerators are feasible with the help of these structures and materials.
基金Supported by the Science and Technology Innovation 2030 New Generation Artificial Intelligence Major Project(2018AAA0100902)the National Key Research and Development Program of China(2019YFB1705800)the National Natural Science Foundation of China(61973270)。