A novel adaptive multiple dependent state sampling plan(AMDSSP)was designed to inspect products from a continuous manufacturing process under the accelerated life test(ALT)using both double sampling plan(DSP)and multi...A novel adaptive multiple dependent state sampling plan(AMDSSP)was designed to inspect products from a continuous manufacturing process under the accelerated life test(ALT)using both double sampling plan(DSP)and multiple dependent state sampling plan(MDSSP)concepts.Under accelerated conditions,the lifetime of a product follows the Weibull distribution with a known shape parameter,while the scale parameter can be determined using the acceleration factor(AF).The Arrhenius model is used to estimate AF when the damaging process is temperature-sensitive.An economic design of the proposed sampling plan was also considered for the ALT.A genetic algorithm with nonlinear optimization was used to estimate optimal plan parameters to minimize the average sample number(ASN)and total cost of inspection(TC)under both producer’s and consumer’s risks.Numerical results are presented to support the AMDSSP for the ALT,while performance comparisons between the AMDSSP,the MDSSP and a single sampling plan(SSP)for the ALT are discussed.Results indicated that the AMDSSP was more flexible and efficient for ASN and TC than the MDSSP and SSP plans under accelerated conditions.The AMDSSP also had a higher operating characteristic(OC)curve than both the existing sampling plans.Two real datasets of electronic devices for the ALT at high temperatures demonstrated the practicality and usefulness of the proposed sampling plan.展开更多
Calcined ginger nuts admixed by fly ash and quartz sand (CGN-(F+S)) has been validated to be basically compatible to earthen sites as an anchor grout. Accelerated ageing tests including water stability test, temperatu...Calcined ginger nuts admixed by fly ash and quartz sand (CGN-(F+S)) has been validated to be basically compatible to earthen sites as an anchor grout. Accelerated ageing tests including water stability test, temperature and humidity cycling test, soundness test and alkali resistance test are conducted with the objective to further research the property changes of CGN-(F+S) grout. Density, surface hardness, water penetration capacity, water permeability capacity, soluble salt, scanning electron microscopy (SEM) images and energy dispersive spectrometry (EDS) spectrum of these samples have been tested after accelerated ageing tests. The results show that densities of samples decrease, surface hardness, water penetration capacity and water permeability capacity of samples increase generally. Besides, soluble salt analysis, SEM and EDS results well corroborate the changes. Based on the results it can be concluded that property changes are most serious after temperature and humidity cycling test, followed by water stability, soundness and alkali resistance test in sequence. But in general, CGN-(F+S) still has good durability.展开更多
Accelerated life testing has been widely used in product life testing experiments because it can quickly provide information on the lifetime distributions by testing products or materials at higher than basic conditio...Accelerated life testing has been widely used in product life testing experiments because it can quickly provide information on the lifetime distributions by testing products or materials at higher than basic conditional levels of stress,such as pressure,temperature,vibration,voltage,or load to induce early failures.In this paper,a step stress partially accelerated life test(SSPALT)is regarded under the progressive type-II censored data with random removals.The removals from the test are considered to have the binomial distribution.The life times of the testing items are assumed to follow lengthbiased weighted Lomax distribution.The maximum likelihood method is used for estimating the model parameters of length-biased weighted Lomax.The asymptotic confidence interval estimates of the model parameters are evaluated using the Fisher information matrix.The Bayesian estimators cannot be obtained in the explicit form,so the Markov chain Monte Carlo method is employed to address this problem,which ensures both obtaining the Bayesian estimates as well as constructing the credible interval of the involved parameters.The precision of the Bayesian estimates and the maximum likelihood estimates are compared by simulations.In addition,to compare the performance of the considered confidence intervals for different parameter values and sample sizes.The Bootstrap confidence intervals give more accurate results than the approximate confidence intervals since the lengths of the former are less than the lengths of latter,for different sample sizes,observed failures,and censoring schemes,in most cases.Also,the percentile Bootstrap confidence intervals give more accurate results than Bootstrap-t since the lengths of the former are less than the lengths of latter for different sample sizes,observed failures,and censoring schemes,in most cases.Further performance comparison is conducted by the experiments with real data.展开更多
Accelerated life testing(ALT)has been widely used to obtain information about the product's life characteristics at normal conditions in a relatively short period of time.Two key issues with ALT are test design an...Accelerated life testing(ALT)has been widely used to obtain information about the product's life characteristics at normal conditions in a relatively short period of time.Two key issues with ALT are test design and data analysis.The test design of constant stress ALT was studied in this paper.The test design usually combines engineering experiences with optimization models.Such approaches are hard to be implemented by practitioners.A"pure"empirical approach was presented to address this issue.With the proposed approach,some of the decision variables are determined based on the results from the literature,some of the other variables are determined based on engineering analysis and /or judgment,and the remaining variables are determined based on the empirical relations developed in this paper.A real-world example is included to illustrate the appropriateness of the proposed approach.展开更多
Accelerated destructive degradation tests(ADDTs)are powerful to provide reliability information in the degradation processes with destructive measurements.In order to carry out an ADDT efficiently,both the estimation ...Accelerated destructive degradation tests(ADDTs)are powerful to provide reliability information in the degradation processes with destructive measurements.In order to carry out an ADDT efficiently,both the estimation precision of parameters and the test cost should be considered.On the basis of the given degradation model and failure criterion,a multiple-objective optimization model for the design of ADDTs is proposed.Under constrains of the maximum measurement time,the total sample size and the number of stress levels,a comprehensive target function is suggested to reflect both the precision of lifetime estimation and total cost,and the optimal test plan is obtained,which is composed by optimal choices for samples size,measurement frequency,and the number of measurements at each stress level.A real example is illustrated to demonstrate the implementation of the proposed approach.展开更多
To estimate the life of vacuum fluorescent display (VFD) more accurately and reduce test time and cost, four constant stress accelerated life tests (CSALTs) were conducted on an accelerated life test model. In the...To estimate the life of vacuum fluorescent display (VFD) more accurately and reduce test time and cost, four constant stress accelerated life tests (CSALTs) were conducted on an accelerated life test model. In the model, statistical analysis of test data is achieved by applying lognormal function to describe the life distribution, and least square method (LSM) to calculate the mean value and the standard deviation of logarithm. As a result, the accelerated life equation was obtained, and then a self-developed software was developed to predict the VFD life. The data analysis results demonstrate that the VFD life submits to lognormal distribution, that the accelerated model meets the linear Arrhenius equation, and that the precise accelerated parameter makes it possible to acquire the life information of VFD within one month.展开更多
Dependent competing risks model is a practical model in the analysis of lifetime and failure modes.The dependence can be captured using a statistical tool to explore the re-lationship among failure causes.In this pape...Dependent competing risks model is a practical model in the analysis of lifetime and failure modes.The dependence can be captured using a statistical tool to explore the re-lationship among failure causes.In this paper,an Archimedean copula is chosen to describe the dependence in a constant-stress accelerated life test.We study the Archimedean copula based dependent competing risks model using parametric and nonparametric methods.The parametric likelihood inference is presented by deriving the general expression of likelihood function based on assumed survival Archimedean copula associated with the model parameter estimation.Combining the nonparametric estimation with progressive censoring and the non-parametric copula estimation,we introduce a nonparametric reliability estimation method given competing risks data.A simulation study and a real data analysis are conducted to show the performance of the estimation methods.展开更多
In this paper, we obtain the optimum plan by discussing a constant-stress accelerated life test (ALT) satisfying the condition (3.3) at k stresses under an exponential distribution.
As few or no failures occur during accelerated life test,it is difficult to assess reliability for long-life products with traditional life tests.Reliability assessment using degradation data of product performance ov...As few or no failures occur during accelerated life test,it is difficult to assess reliability for long-life products with traditional life tests.Reliability assessment using degradation data of product performance over time becomes a significant approach.Aerospace electrical connector is researched in this paper.Through the analysis of failure mechanism,the performance degradation law is obtained and the statistical model for degradation failure is set up; according to the research on statistical analysis methods for degradation data,accelerated life test theory and method for aerospace electrical connector based on performance degradation is proposed by improving time series analysis method,and the storage reliability is assessed for Y11X series of aerospace electrical connector with degradation data from accelerated degradation test.The result obtained is basically consistent with that obtained from accelerated life test based on failure data,and the two estimates of product's characteristic life only have a difference of 8.7%,but the test time shortens about a half.As a result,a systemic approach is proposed for reliability assessment of highly reliable and long-life aerospace product.展开更多
In order to get a rapid assessment on the storage reliability of high-reliable and long-life products within the storage period, accelerated degradation test data with a large amount of reliability information of prod...In order to get a rapid assessment on the storage reliability of high-reliable and long-life products within the storage period, accelerated degradation test data with a large amount of reliability information of product is adopted. Conducting a constant-stress accelerated degradation test(CSADT) is generally very costly as it requires a large sample size and long time for test. To overcome this problem, it is necessary to carry out research on modeling and statistical analysis methods of step-stress accelerated degradation test (SSADT). Taking electrical connectors as the object, a research is conducted on statistical model and assessment method for SSADT. On the basis of mixed-effect degradation path model, the statistical model of SSADT for electrical connectors is presented, the maximum likelihood method for SSADT data based on mixed-effect degradation model is proposed. SSADT accelerated by temperature stress is conducted to Y11X-1419 type of electrical connectors, and the storage reliability is assessed with the SSADT data. Compared with the result obtained from accelerated life test, the reliability estimation of 32-year storage period for electrical connectors obtained from S SADT data only have a difference of 0.869%, which validates the accuracy of the degradation model and the feasibility of the test data statistic analysis method put forward.展开更多
Data obtained from accelerated life testing (ALT) when there are two or more failure modes, which is commonly referred to as competing failure modes, are often incomplete. The incompleteness is mainly due to censori...Data obtained from accelerated life testing (ALT) when there are two or more failure modes, which is commonly referred to as competing failure modes, are often incomplete. The incompleteness is mainly due to censoring, as well as masking which might be the case that the failure time is observed, but its corresponding failure mode is not identified. Because the identification of the failure mode may be expensive, or very difficult to investigate due to lack of appropriate diagnostics. A method is proposed for analyzing incomplete data of constant stress ALT with competing failure modes. It is assumed that failure modes have s-independent latent lifetimes and the log lifetime of each failure mode can be written as a linear function of stress. The parameters of the model are estimated by using the expectation maximum (EM) algorithm with incomplete data. Simulation studies are performed to check'model validity and investigate the properties of estimates. For further validation, the method is also illustrated by an example, which shows the process of analyze incomplete data from ALT of some insulation system. Because of considering the incompleteness of data in modeling and making use of the EM algorithm in estimating, the method becomes more flexible in ALT analysis.展开更多
For the product degradation process with random effect (RE), measurement error (ME) and nonlinearity in step-stress accelerated degradation test (SSADT), the nonlinear Wiener based degradation model with RE and ME is ...For the product degradation process with random effect (RE), measurement error (ME) and nonlinearity in step-stress accelerated degradation test (SSADT), the nonlinear Wiener based degradation model with RE and ME is built. An analytical approximation to the probability density function (PDF) of the product's lifetime is derived in a closed form. The process and data of SSADT are analyzed to obtain the relation model of the observed data under each accelerated stress. The likelihood function for the population-based observed data is constructed. The population-based model parameters and its random coefficient prior values are estimated. According to the newly observed data of the target product in SSADT, an analytical approximation to the PDF of its residual lifetime (RL) is derived in accordance with its individual degradation characteristics. The parameter updating method based on Bayesian inference is applied to obtain the posterior value of random coefficient of the RL model. A numerical example by simulation is analyzed to verify the accuracy and advantage of the proposed model.展开更多
For optimal design of constant stress accelerated life test(CSALT) with two-stress, if the stresses could not reach the highest levels simultaneously, the test region becomes non-rectangular. For optimal CSALT desig...For optimal design of constant stress accelerated life test(CSALT) with two-stress, if the stresses could not reach the highest levels simultaneously, the test region becomes non-rectangular. For optimal CSALT design on non-rectangle test region, the present method is only focused on non-rectangle test region with simple boundary, and the optimization algorithm is based on experience which can not ensure to obtain the optimal plan. In this paper, considering the linear-extreme value model and the optimization goal to minimize the variance of lifetime estimate under normal stress, the optimal design method of two-stress type-I censored CSALT plan on general non-rectangular test region is proposed. First, two properties of optimal test plans are proved and the relationship of all the optimal test plans is determined analytically. Then, on the basis of the two properties, the optimal problem is simplified and the optimal design method of two-stress CSALT plan on general non-rectangular test region is proposed. Finally, a numerical example is used to illustrate the feasibility and effectiveness of the method, The result shows that the proposed method could obtain the optimal test plan on non-rectangular test regions with arbitrary boundaries. This research provides the theory and method for two-stress optimal CSALT planning on non-rectangular test regions.展开更多
For planning optimum multiple stresses accelerated life test plans, a commonly followed guiding principle is that all parameters of the life-stress relationship should be estimated, and the number of the stress level ...For planning optimum multiple stresses accelerated life test plans, a commonly followed guiding principle is that all parameters of the life-stress relationship should be estimated, and the number of the stress level combinations must be no less than the number of parameters of the life-stress relationship. However, the general objective of an accelerated life test(ALT) is to assess thep-th quantile of the product life distribution under normal stress. For this objective,estimating all model parameters is not necessary, and this will increase the cost of test. Based on the theoretical conclusion that the stress level combinations of the optimum multiple stresses ALT plan locate on a straight line through the origin of coordinate, it is proposed that a design idea of planning the optimum multiple stresses ALT plan through transforming the problem of designing an optimum multiple stresses ALT plan to designing an optimum single stress ALT plan. Moreover, a method of planning the optimum multiple stresses ALT plan which can avoid estimating all model parameters is established. An example shows that, the proposed plan which only has two stress level combinations could achieve an accuracy no less than the traditional plan, and save the test time and cost on one stress level combination at least; when the actual product life is less than the design value, even the deviation of the model initial parameters value is up to 20%, the variance of the estimation of thep-th quantile of the proposed plan is still smaller than the traditional plans approximately 25%. A design method is provided for planning the optimum multiple stresses ALT which uses the statistical optimum degenerate test plan as the optimum multiple stresses accelerated life test plan.展开更多
Constant-step stress accelerated life test of Vacuum Fluorescent Display (VFD) was conducted with increased cathode temperature. Statistical analysis was done by applying Weibull distribution for describing the life, ...Constant-step stress accelerated life test of Vacuum Fluorescent Display (VFD) was conducted with increased cathode temperature. Statistical analysis was done by applying Weibull distribution for describing the life, and Least Square Method (LSM)for estimating Weibull parameters. Self-designed special software was used to predict the VFD life. Numerical results showed that the average life of VFD is over 30000 h, that the VFD life follows Weibull distribution, and that the life-stress relationship satisfies linear Arrhenius equation completely. Accurate calculation of the key parameter enabled rapid estimation of VFD life.展开更多
In the constant-stress accelerated life test, estimation issues are discussed for a generalized half-normal distribution under a log-linear life-stress model. The maximum likelihood estimates with the corresponding fi...In the constant-stress accelerated life test, estimation issues are discussed for a generalized half-normal distribution under a log-linear life-stress model. The maximum likelihood estimates with the corresponding fixed point type iterative algorithm for unknown parameters are presented, and the least square estimates of the parameters are also proposed. Meanwhile, confidence intervals of model parameters are constructed by using the asymptotic theory and bootstrap technique. Numerical illustration is given to investigate the performance of our methods.展开更多
The optimum design of equivalent accelerated life testing plan based on proportional hazards-proportional odds model using D-optimality is presented. The defined equivalent test plan is the test plan that has the same...The optimum design of equivalent accelerated life testing plan based on proportional hazards-proportional odds model using D-optimality is presented. The defined equivalent test plan is the test plan that has the same value of the determinant of Fisher information matrix. The equivalent test plan of step stress accelerated life testing (SSALT) to a baseline optimum constant stress accelerated life testing (CSALT) plan is obtained by adjusting the censoring time of SSALT and solving the optimization problem for each case to achieve the same value of the determinant of Fisher information matrix as in the baseline optimum CSALT plan. Numer- ical examples are given finally which demonstrate the equivalent SSALT plan to the baseline optimum CSALT plan reduces almost half of the test time while achieving approximately the same estimation errors of model parameters.展开更多
This study presents a Bayesian methodology for de- signing step stress accelerated degradation testing (SSADT) and its application to batteries. First, the simulation-based Bayesian de- sign framework for SSADT is p...This study presents a Bayesian methodology for de- signing step stress accelerated degradation testing (SSADT) and its application to batteries. First, the simulation-based Bayesian de- sign framework for SSADT is presented. Then, by considering his- torical data, specific optimal objectives oriented Kullback-Leibler (KL) divergence is established. A numerical example is discussed to illustrate the design approach. It is assumed that the degrada- tion model (or process) follows a drift Brownian motion; the accele- ration model follows Arrhenius equation; and the corresponding parameters follow normal and Gamma prior distributions. Using the Markov Chain Monte Carlo (MCMC) method and WinBUGS software, the comparison shows that KL divergence is better than quadratic loss for optimal criteria. Further, the effect of simulation outiiers on the optimization plan is analyzed and the preferred sur- face fitting algorithm is chosen. At the end of the paper, a NASA lithium-ion battery dataset is used as historical information and the KL divergence oriented Bayesian design is compared with maxi- mum likelihood theory oriented locally optimal design. The results show that the proposed method can provide a much better testing plan for this engineering application.展开更多
Accelerated life test(ALT) is currently the main method of assessing product reliability rapidly, and the design of efficient test plans is a critical step to ensure that ALTs can assess the product reliability accura...Accelerated life test(ALT) is currently the main method of assessing product reliability rapidly, and the design of efficient test plans is a critical step to ensure that ALTs can assess the product reliability accurately, quickly, and economically. With the promotion of the national strategy of civil-military integration, ALT will be widely used in the research and development(R&D) of various types of products, and the ALT plan design theory will face further challenges. To aid engineers in selecting appropriate theories and to stimulate researchers to develop the theories required in engineering, with focus on the demands for theory research that arise from the implementation of ALT, this paper reviews and summarizes the development of ALT plan design theory. The development of the theory and method for planning optimal ALT for location-scale distribution, which is the most applied and mature theory of designing the optimal ALT plan, are described in detail. Taking this as the center of radiation, some problems that ALT now faces, such as the verification of the statistical model, limitation of sample size, solutions of resource limits, optimization of the test arrangement, and management of product complexity, are discussed, and the general ideas and methods of solving these problems are analyzed. Suggestions for selecting appropriate ALT plan design theories are proposed, and the urgent solved theory problems and opinions of their solutions are proposed. Based on the principle of convenience for engineers to select appropriate methods according to the problems found in practice, this paper reviews the development of optimal ALT plan design theory by taking the engineering problems arising from the ALT implementation as the main thread, provides guidelines on selecting appropriate theories for engineers, and proposes opinions about the urgent solved theory problems for researchers.展开更多
An accelerated decay test and a natural decay test were conducted synchronically to explore the strength degradation of decaying wood members under long-term exposure to natural environment.A natural decay test was ca...An accelerated decay test and a natural decay test were conducted synchronically to explore the strength degradation of decaying wood members under long-term exposure to natural environment.A natural decay test was carried out to measure the bending strength,compressive strength parallel to grain and modulus of elasticity of the wood members,with 6 groups of specimens decayed in natural environment for 3 to 18 months respectively.To compare with corresponding decay test,in which 6 other groups of specimens were measured under accelerated conditions.The experimental data collected were evaluated by Pearson productmoment for the correlation.The results indicate that the mechanical properties of the accelerated decay were highly correlated with those in natural environment,both of which decreased in the same trend.Under the given test conditions,the mean value of the accelerated decay test data were curve-fitted to achieve the time-dependent degradation model of the bending strength,the compressive strength parallel to grain,as well as the modulus of elasticity.Due to the high correlation,the acceleration shift factors(ASF)of the two tests were derived,where the bending strength of 2.934,the compressive strength parallel to grain of 2.519 and the elastic modulus of 2.346 were employed to formulate the strength degradation models in the long-term natural environment.The results verify that the exponential functionσ=σ0e^(-βt)enables to exactly capture the degradation of the mechanical properties of wood members decayed in natural environment.展开更多
基金This research was supported by The Science,Research and Innovation Promotion Funding(TSRI)(Grant No.FRB650070/0168)This research block grants was managed under Rajamangala University of Technology Thanyaburi(FRB65E0634M.3).
文摘A novel adaptive multiple dependent state sampling plan(AMDSSP)was designed to inspect products from a continuous manufacturing process under the accelerated life test(ALT)using both double sampling plan(DSP)and multiple dependent state sampling plan(MDSSP)concepts.Under accelerated conditions,the lifetime of a product follows the Weibull distribution with a known shape parameter,while the scale parameter can be determined using the acceleration factor(AF).The Arrhenius model is used to estimate AF when the damaging process is temperature-sensitive.An economic design of the proposed sampling plan was also considered for the ALT.A genetic algorithm with nonlinear optimization was used to estimate optimal plan parameters to minimize the average sample number(ASN)and total cost of inspection(TC)under both producer’s and consumer’s risks.Numerical results are presented to support the AMDSSP for the ALT,while performance comparisons between the AMDSSP,the MDSSP and a single sampling plan(SSP)for the ALT are discussed.Results indicated that the AMDSSP was more flexible and efficient for ASN and TC than the MDSSP and SSP plans under accelerated conditions.The AMDSSP also had a higher operating characteristic(OC)curve than both the existing sampling plans.Two real datasets of electronic devices for the ALT at high temperatures demonstrated the practicality and usefulness of the proposed sampling plan.
基金Project(51578272)supported by the National Natural Science Foundation of China
文摘Calcined ginger nuts admixed by fly ash and quartz sand (CGN-(F+S)) has been validated to be basically compatible to earthen sites as an anchor grout. Accelerated ageing tests including water stability test, temperature and humidity cycling test, soundness test and alkali resistance test are conducted with the objective to further research the property changes of CGN-(F+S) grout. Density, surface hardness, water penetration capacity, water permeability capacity, soluble salt, scanning electron microscopy (SEM) images and energy dispersive spectrometry (EDS) spectrum of these samples have been tested after accelerated ageing tests. The results show that densities of samples decrease, surface hardness, water penetration capacity and water permeability capacity of samples increase generally. Besides, soluble salt analysis, SEM and EDS results well corroborate the changes. Based on the results it can be concluded that property changes are most serious after temperature and humidity cycling test, followed by water stability, soundness and alkali resistance test in sequence. But in general, CGN-(F+S) still has good durability.
基金This work was funded by the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,under Grant No.FP-190-42.
文摘Accelerated life testing has been widely used in product life testing experiments because it can quickly provide information on the lifetime distributions by testing products or materials at higher than basic conditional levels of stress,such as pressure,temperature,vibration,voltage,or load to induce early failures.In this paper,a step stress partially accelerated life test(SSPALT)is regarded under the progressive type-II censored data with random removals.The removals from the test are considered to have the binomial distribution.The life times of the testing items are assumed to follow lengthbiased weighted Lomax distribution.The maximum likelihood method is used for estimating the model parameters of length-biased weighted Lomax.The asymptotic confidence interval estimates of the model parameters are evaluated using the Fisher information matrix.The Bayesian estimators cannot be obtained in the explicit form,so the Markov chain Monte Carlo method is employed to address this problem,which ensures both obtaining the Bayesian estimates as well as constructing the credible interval of the involved parameters.The precision of the Bayesian estimates and the maximum likelihood estimates are compared by simulations.In addition,to compare the performance of the considered confidence intervals for different parameter values and sample sizes.The Bootstrap confidence intervals give more accurate results than the approximate confidence intervals since the lengths of the former are less than the lengths of latter,for different sample sizes,observed failures,and censoring schemes,in most cases.Also,the percentile Bootstrap confidence intervals give more accurate results than Bootstrap-t since the lengths of the former are less than the lengths of latter for different sample sizes,observed failures,and censoring schemes,in most cases.Further performance comparison is conducted by the experiments with real data.
基金National Natural Science Foundation of China(No.71371035)
文摘Accelerated life testing(ALT)has been widely used to obtain information about the product's life characteristics at normal conditions in a relatively short period of time.Two key issues with ALT are test design and data analysis.The test design of constant stress ALT was studied in this paper.The test design usually combines engineering experiences with optimization models.Such approaches are hard to be implemented by practitioners.A"pure"empirical approach was presented to address this issue.With the proposed approach,some of the decision variables are determined based on the results from the literature,some of the other variables are determined based on engineering analysis and /or judgment,and the remaining variables are determined based on the empirical relations developed in this paper.A real-world example is included to illustrate the appropriateness of the proposed approach.
文摘Accelerated destructive degradation tests(ADDTs)are powerful to provide reliability information in the degradation processes with destructive measurements.In order to carry out an ADDT efficiently,both the estimation precision of parameters and the test cost should be considered.On the basis of the given degradation model and failure criterion,a multiple-objective optimization model for the design of ADDTs is proposed.Under constrains of the maximum measurement time,the total sample size and the number of stress levels,a comprehensive target function is suggested to reflect both the precision of lifetime estimation and total cost,and the optimal test plan is obtained,which is composed by optimal choices for samples size,measurement frequency,and the number of measurements at each stress level.A real example is illustrated to demonstrate the implementation of the proposed approach.
基金Shanghai Municipal Natural Science Foun-dation (NO.09ZR1413000)Undergraduate Education High-land Construction Project of ShanghaiKey Technology R&D Program of Shanghai Municipality (No.08160510600)
文摘To estimate the life of vacuum fluorescent display (VFD) more accurately and reduce test time and cost, four constant stress accelerated life tests (CSALTs) were conducted on an accelerated life test model. In the model, statistical analysis of test data is achieved by applying lognormal function to describe the life distribution, and least square method (LSM) to calculate the mean value and the standard deviation of logarithm. As a result, the accelerated life equation was obtained, and then a self-developed software was developed to predict the VFD life. The data analysis results demonstrate that the VFD life submits to lognormal distribution, that the accelerated model meets the linear Arrhenius equation, and that the precise accelerated parameter makes it possible to acquire the life information of VFD within one month.
基金Supported by the National Natural Science Foundation of China(12101476,12061091,11901134)the Fundamental Research Funds for the Central Universities(ZYTS23054,QTZX22054)+1 种基金the Yunnan Funda-mental Research Projects(202101AT070103)the Natural Science Basic Research Program of Shaanxi Province(2020JQ-285).
文摘Dependent competing risks model is a practical model in the analysis of lifetime and failure modes.The dependence can be captured using a statistical tool to explore the re-lationship among failure causes.In this paper,an Archimedean copula is chosen to describe the dependence in a constant-stress accelerated life test.We study the Archimedean copula based dependent competing risks model using parametric and nonparametric methods.The parametric likelihood inference is presented by deriving the general expression of likelihood function based on assumed survival Archimedean copula associated with the model parameter estimation.Combining the nonparametric estimation with progressive censoring and the non-parametric copula estimation,we introduce a nonparametric reliability estimation method given competing risks data.A simulation study and a real data analysis are conducted to show the performance of the estimation methods.
文摘In this paper, we obtain the optimum plan by discussing a constant-stress accelerated life test (ALT) satisfying the condition (3.3) at k stresses under an exponential distribution.
基金supported by National Natural Science Foundation of China (Grant No. 50935002,Grant No. 51075370,Grant No. 51105341)National Hi-tech Research and Development Program of China (863 Program,Grant No. 2007AA04Z409)Civil Aerospace Science and Technology Pre-research Project of China (Grant No. B122006 2302)
文摘As few or no failures occur during accelerated life test,it is difficult to assess reliability for long-life products with traditional life tests.Reliability assessment using degradation data of product performance over time becomes a significant approach.Aerospace electrical connector is researched in this paper.Through the analysis of failure mechanism,the performance degradation law is obtained and the statistical model for degradation failure is set up; according to the research on statistical analysis methods for degradation data,accelerated life test theory and method for aerospace electrical connector based on performance degradation is proposed by improving time series analysis method,and the storage reliability is assessed for Y11X series of aerospace electrical connector with degradation data from accelerated degradation test.The result obtained is basically consistent with that obtained from accelerated life test based on failure data,and the two estimates of product's characteristic life only have a difference of 8.7%,but the test time shortens about a half.As a result,a systemic approach is proposed for reliability assessment of highly reliable and long-life aerospace product.
基金supported by National Natural Science Foundation of China(Grant Nos.50935002,51075370,51105341,51275480)Zhejiang Provincial Natural Science Foundation of China(Grant No.Y1100777)Zhejiang Provincial Key Scientific and Technological Innovation Team(Grant No.2010R50005)
文摘In order to get a rapid assessment on the storage reliability of high-reliable and long-life products within the storage period, accelerated degradation test data with a large amount of reliability information of product is adopted. Conducting a constant-stress accelerated degradation test(CSADT) is generally very costly as it requires a large sample size and long time for test. To overcome this problem, it is necessary to carry out research on modeling and statistical analysis methods of step-stress accelerated degradation test (SSADT). Taking electrical connectors as the object, a research is conducted on statistical model and assessment method for SSADT. On the basis of mixed-effect degradation path model, the statistical model of SSADT for electrical connectors is presented, the maximum likelihood method for SSADT data based on mixed-effect degradation model is proposed. SSADT accelerated by temperature stress is conducted to Y11X-1419 type of electrical connectors, and the storage reliability is assessed with the SSADT data. Compared with the result obtained from accelerated life test, the reliability estimation of 32-year storage period for electrical connectors obtained from S SADT data only have a difference of 0.869%, which validates the accuracy of the degradation model and the feasibility of the test data statistic analysis method put forward.
基金supported by Sustentation Program of National Ministries and Commissions of China (Grant No. 203020102)
文摘Data obtained from accelerated life testing (ALT) when there are two or more failure modes, which is commonly referred to as competing failure modes, are often incomplete. The incompleteness is mainly due to censoring, as well as masking which might be the case that the failure time is observed, but its corresponding failure mode is not identified. Because the identification of the failure mode may be expensive, or very difficult to investigate due to lack of appropriate diagnostics. A method is proposed for analyzing incomplete data of constant stress ALT with competing failure modes. It is assumed that failure modes have s-independent latent lifetimes and the log lifetime of each failure mode can be written as a linear function of stress. The parameters of the model are estimated by using the expectation maximum (EM) algorithm with incomplete data. Simulation studies are performed to check'model validity and investigate the properties of estimates. For further validation, the method is also illustrated by an example, which shows the process of analyze incomplete data from ALT of some insulation system. Because of considering the incompleteness of data in modeling and making use of the EM algorithm in estimating, the method becomes more flexible in ALT analysis.
基金supported by the National Defense Foundation of China(71601183)
文摘For the product degradation process with random effect (RE), measurement error (ME) and nonlinearity in step-stress accelerated degradation test (SSADT), the nonlinear Wiener based degradation model with RE and ME is built. An analytical approximation to the probability density function (PDF) of the product's lifetime is derived in a closed form. The process and data of SSADT are analyzed to obtain the relation model of the observed data under each accelerated stress. The likelihood function for the population-based observed data is constructed. The population-based model parameters and its random coefficient prior values are estimated. According to the newly observed data of the target product in SSADT, an analytical approximation to the PDF of its residual lifetime (RL) is derived in accordance with its individual degradation characteristics. The parameter updating method based on Bayesian inference is applied to obtain the posterior value of random coefficient of the RL model. A numerical example by simulation is analyzed to verify the accuracy and advantage of the proposed model.
基金supported by National Natural Science Foundation of China(Grant Nos. 50935002, 51075370, 51105341)National Hi-tech Research and Development Program of China(863 Program, Grant No. 2007AA04Z409)+1 种基金the Technology Foundation of National Defense ProgramZhejiang Provincial Natural Science Foundation of China (Grant Nos. Y1100777, Y1080762)
文摘For optimal design of constant stress accelerated life test(CSALT) with two-stress, if the stresses could not reach the highest levels simultaneously, the test region becomes non-rectangular. For optimal CSALT design on non-rectangle test region, the present method is only focused on non-rectangle test region with simple boundary, and the optimization algorithm is based on experience which can not ensure to obtain the optimal plan. In this paper, considering the linear-extreme value model and the optimization goal to minimize the variance of lifetime estimate under normal stress, the optimal design method of two-stress type-I censored CSALT plan on general non-rectangular test region is proposed. First, two properties of optimal test plans are proved and the relationship of all the optimal test plans is determined analytically. Then, on the basis of the two properties, the optimal problem is simplified and the optimal design method of two-stress CSALT plan on general non-rectangular test region is proposed. Finally, a numerical example is used to illustrate the feasibility and effectiveness of the method, The result shows that the proposed method could obtain the optimal test plan on non-rectangular test regions with arbitrary boundaries. This research provides the theory and method for two-stress optimal CSALT planning on non-rectangular test regions.
基金Supported by National Natural Science Foundation of China (Grant Nos.50935002,51075370,51105341,51275480,51305402)Zhejiang Provincial Natural Science Foundation of China (Grant No.Y1100777)+1 种基金Zhejiang Provincial Key Science and Technology Innovation Team (Grant No.2010R50005)Key Program of Science and Technology of Sichuan Provincial Education Department,China (Grant No.14ZA0005)
文摘For planning optimum multiple stresses accelerated life test plans, a commonly followed guiding principle is that all parameters of the life-stress relationship should be estimated, and the number of the stress level combinations must be no less than the number of parameters of the life-stress relationship. However, the general objective of an accelerated life test(ALT) is to assess thep-th quantile of the product life distribution under normal stress. For this objective,estimating all model parameters is not necessary, and this will increase the cost of test. Based on the theoretical conclusion that the stress level combinations of the optimum multiple stresses ALT plan locate on a straight line through the origin of coordinate, it is proposed that a design idea of planning the optimum multiple stresses ALT plan through transforming the problem of designing an optimum multiple stresses ALT plan to designing an optimum single stress ALT plan. Moreover, a method of planning the optimum multiple stresses ALT plan which can avoid estimating all model parameters is established. An example shows that, the proposed plan which only has two stress level combinations could achieve an accuracy no less than the traditional plan, and save the test time and cost on one stress level combination at least; when the actual product life is less than the design value, even the deviation of the model initial parameters value is up to 20%, the variance of the estimation of thep-th quantile of the proposed plan is still smaller than the traditional plans approximately 25%. A design method is provided for planning the optimum multiple stresses ALT which uses the statistical optimum degenerate test plan as the optimum multiple stresses accelerated life test plan.
基金Project supported by the Postdoctoral Scientific Research Foundation of Zhejiang Province of China, and the Special Fund of Cooperation between Shaoxing City and Zhejiang University of China
文摘Constant-step stress accelerated life test of Vacuum Fluorescent Display (VFD) was conducted with increased cathode temperature. Statistical analysis was done by applying Weibull distribution for describing the life, and Least Square Method (LSM)for estimating Weibull parameters. Self-designed special software was used to predict the VFD life. Numerical results showed that the average life of VFD is over 30000 h, that the VFD life follows Weibull distribution, and that the life-stress relationship satisfies linear Arrhenius equation completely. Accurate calculation of the key parameter enabled rapid estimation of VFD life.
基金supported by the National Natural Science Foundation of China(1150143371473187)the Natural Science Basic Research Plan in Shaanxi Province of China(2016JQ1014)
文摘In the constant-stress accelerated life test, estimation issues are discussed for a generalized half-normal distribution under a log-linear life-stress model. The maximum likelihood estimates with the corresponding fixed point type iterative algorithm for unknown parameters are presented, and the least square estimates of the parameters are also proposed. Meanwhile, confidence intervals of model parameters are constructed by using the asymptotic theory and bootstrap technique. Numerical illustration is given to investigate the performance of our methods.
文摘The optimum design of equivalent accelerated life testing plan based on proportional hazards-proportional odds model using D-optimality is presented. The defined equivalent test plan is the test plan that has the same value of the determinant of Fisher information matrix. The equivalent test plan of step stress accelerated life testing (SSALT) to a baseline optimum constant stress accelerated life testing (CSALT) plan is obtained by adjusting the censoring time of SSALT and solving the optimization problem for each case to achieve the same value of the determinant of Fisher information matrix as in the baseline optimum CSALT plan. Numer- ical examples are given finally which demonstrate the equivalent SSALT plan to the baseline optimum CSALT plan reduces almost half of the test time while achieving approximately the same estimation errors of model parameters.
基金supported by the National Natural Science Foundation of China(61104182)
文摘This study presents a Bayesian methodology for de- signing step stress accelerated degradation testing (SSADT) and its application to batteries. First, the simulation-based Bayesian de- sign framework for SSADT is presented. Then, by considering his- torical data, specific optimal objectives oriented Kullback-Leibler (KL) divergence is established. A numerical example is discussed to illustrate the design approach. It is assumed that the degrada- tion model (or process) follows a drift Brownian motion; the accele- ration model follows Arrhenius equation; and the corresponding parameters follow normal and Gamma prior distributions. Using the Markov Chain Monte Carlo (MCMC) method and WinBUGS software, the comparison shows that KL divergence is better than quadratic loss for optimal criteria. Further, the effect of simulation outiiers on the optimization plan is analyzed and the preferred sur- face fitting algorithm is chosen. At the end of the paper, a NASA lithium-ion battery dataset is used as historical information and the KL divergence oriented Bayesian design is compared with maxi- mum likelihood theory oriented locally optimal design. The results show that the proposed method can provide a much better testing plan for this engineering application.
基金Supported by National Natural Science Foundation of China(Grant No.51275480,51305402,51405447)International Science & Technology Cooperation Program of China(Grant No.2015DFA71400)
文摘Accelerated life test(ALT) is currently the main method of assessing product reliability rapidly, and the design of efficient test plans is a critical step to ensure that ALTs can assess the product reliability accurately, quickly, and economically. With the promotion of the national strategy of civil-military integration, ALT will be widely used in the research and development(R&D) of various types of products, and the ALT plan design theory will face further challenges. To aid engineers in selecting appropriate theories and to stimulate researchers to develop the theories required in engineering, with focus on the demands for theory research that arise from the implementation of ALT, this paper reviews and summarizes the development of ALT plan design theory. The development of the theory and method for planning optimal ALT for location-scale distribution, which is the most applied and mature theory of designing the optimal ALT plan, are described in detail. Taking this as the center of radiation, some problems that ALT now faces, such as the verification of the statistical model, limitation of sample size, solutions of resource limits, optimization of the test arrangement, and management of product complexity, are discussed, and the general ideas and methods of solving these problems are analyzed. Suggestions for selecting appropriate ALT plan design theories are proposed, and the urgent solved theory problems and opinions of their solutions are proposed. Based on the principle of convenience for engineers to select appropriate methods according to the problems found in practice, this paper reviews the development of optimal ALT plan design theory by taking the engineering problems arising from the ALT implementation as the main thread, provides guidelines on selecting appropriate theories for engineers, and proposes opinions about the urgent solved theory problems for researchers.
基金supported by a grant from the National Natural Science Foundation of China(No.51208399)Natural Science Foundation of Hubei province of China(No.2018CFB645)Hubei Key Laboratory of Roadway Bridge and Structure Engineering(Wuhan University of Technology)(No.DQJJ201706).
文摘An accelerated decay test and a natural decay test were conducted synchronically to explore the strength degradation of decaying wood members under long-term exposure to natural environment.A natural decay test was carried out to measure the bending strength,compressive strength parallel to grain and modulus of elasticity of the wood members,with 6 groups of specimens decayed in natural environment for 3 to 18 months respectively.To compare with corresponding decay test,in which 6 other groups of specimens were measured under accelerated conditions.The experimental data collected were evaluated by Pearson productmoment for the correlation.The results indicate that the mechanical properties of the accelerated decay were highly correlated with those in natural environment,both of which decreased in the same trend.Under the given test conditions,the mean value of the accelerated decay test data were curve-fitted to achieve the time-dependent degradation model of the bending strength,the compressive strength parallel to grain,as well as the modulus of elasticity.Due to the high correlation,the acceleration shift factors(ASF)of the two tests were derived,where the bending strength of 2.934,the compressive strength parallel to grain of 2.519 and the elastic modulus of 2.346 were employed to formulate the strength degradation models in the long-term natural environment.The results verify that the exponential functionσ=σ0e^(-βt)enables to exactly capture the degradation of the mechanical properties of wood members decayed in natural environment.