With the support by the National Natural Science Foundation of China and the'Strategic Priority Research Program'of the Chinese Academy of Sciences,a collaborative study by the research groups led by Professor...With the support by the National Natural Science Foundation of China and the'Strategic Priority Research Program'of the Chinese Academy of Sciences,a collaborative study by the research groups led by Professors Tian Zhixi(田志喜),Wang Guodong(王国栋),and Zhu Baoge(朱保葛)from the展开更多
Brassica napus,commonly known as rapeseed or canola,is a major oil crop contributing over 13%to the stable supply of edible vegetable oil worldwide.Identification and understanding the gene functions in the B.napus ge...Brassica napus,commonly known as rapeseed or canola,is a major oil crop contributing over 13%to the stable supply of edible vegetable oil worldwide.Identification and understanding the gene functions in the B.napus genome is crucial for genomic breeding.A group of genes controlling agronomic traits have been successfully cloned through functional genomics studies in B.napus.In this review,we present an overview of the progress made in the functional genomics of B.napus,including the availability of germplasm resources,omics databases and cloned functional genes.Based on the current progress,we also highlight the main challenges and perspectives in this field.The advances in the functional genomics of B.napus contribute to a better understanding of the genetic basis underlying the complex agronomic traits in B.napus and will expedite the breeding of high quality,high resistance and high yield in B.napus varieties.展开更多
文摘With the support by the National Natural Science Foundation of China and the'Strategic Priority Research Program'of the Chinese Academy of Sciences,a collaborative study by the research groups led by Professors Tian Zhixi(田志喜),Wang Guodong(王国栋),and Zhu Baoge(朱保葛)from the
基金supported by grants from the National Science Fund for Distinguished Young Scholars(32225037)Hubei Hongshan Laboratory(2021HSZD004)+1 种基金HZAU-AGIS Cooperation Fund(SZYJY2022008)Higher Education Discipline Innovation Project(B20051)。
文摘Brassica napus,commonly known as rapeseed or canola,is a major oil crop contributing over 13%to the stable supply of edible vegetable oil worldwide.Identification and understanding the gene functions in the B.napus genome is crucial for genomic breeding.A group of genes controlling agronomic traits have been successfully cloned through functional genomics studies in B.napus.In this review,we present an overview of the progress made in the functional genomics of B.napus,including the availability of germplasm resources,omics databases and cloned functional genes.Based on the current progress,we also highlight the main challenges and perspectives in this field.The advances in the functional genomics of B.napus contribute to a better understanding of the genetic basis underlying the complex agronomic traits in B.napus and will expedite the breeding of high quality,high resistance and high yield in B.napus varieties.