N2 fixation rates(NFR,in terms of N)in the northern South China Sea(nSCS)and the East China Sea(ECS)were measured using the acetylene reduction assay in summer and winter,2009.NFR of the surface water ranged from 1.14...N2 fixation rates(NFR,in terms of N)in the northern South China Sea(nSCS)and the East China Sea(ECS)were measured using the acetylene reduction assay in summer and winter,2009.NFR of the surface water ranged from 1.14 nmol/(L·d)to 10.40 nmol/(L·d)(average at(4.89±3.46)nmol/(L·d),n=11)in summer and 0.74 nmol/(L·d)to 29.45 nmol/(L·d)(average at(7.81±8.50)nmol/(L·d),n=15)in winter.Significant spatio-temporal heterogeneity emerged in our study:the anticyclonic eddies(AE)(P<0.01)and the Kuroshio Current(KC)(P<0.05)performed significantly higher NFR than that in the cyclonic eddies or no-eddy area(CEONE),indicating NFR was profoundly influenced by the physical process of the Kuroshio and mesoscale eddies.The depth-integrated N2 fixation rates(INF,in terms of N)ranged from 52.4μmol/(m2·d)to 905.2μmol/(m2·d)(average at(428.9±305.5)μmol/(m2·d),n=15)in the winter.The contribution of surface NFR to primary production(PP)ranged from 1.7%to 18.5%in the summer,and the mean contribution of INF to new primary production(NPP)in the nSCS and ECS were estimated to be 11.0%and 36.7%in the winter.The contribution of INF to NPP(3.0%–93.9%)also decreased from oligotrophic sea toward the eutrophic waters affected by runoffs or the CEONE.Furthermore,we observed higher contributions compared to previous studies,revealing the vital roles of nitrogen fixation in sustaining the carbon pump of the nSCS and ECS.展开更多
基金The National Natural Science Foundation of China under contract Nos 41876134 and 41406155the University Innovation Team Training Program for Tianjin under contract No.TD12-5003+3 种基金the Tianjin 131 Innovation Team Program under contract No.20180314the Changjiang Scholar Program of Chinese Ministry of Education to Jun Sun under contract No.T2014253the Tianjin Municipal Education Commission Research Program under contract No.2017KJ012the Open Fund of Tianjin Key Laboratory of Marine Resources and Chemistry under contract Nos 201506 and 201801
文摘N2 fixation rates(NFR,in terms of N)in the northern South China Sea(nSCS)and the East China Sea(ECS)were measured using the acetylene reduction assay in summer and winter,2009.NFR of the surface water ranged from 1.14 nmol/(L·d)to 10.40 nmol/(L·d)(average at(4.89±3.46)nmol/(L·d),n=11)in summer and 0.74 nmol/(L·d)to 29.45 nmol/(L·d)(average at(7.81±8.50)nmol/(L·d),n=15)in winter.Significant spatio-temporal heterogeneity emerged in our study:the anticyclonic eddies(AE)(P<0.01)and the Kuroshio Current(KC)(P<0.05)performed significantly higher NFR than that in the cyclonic eddies or no-eddy area(CEONE),indicating NFR was profoundly influenced by the physical process of the Kuroshio and mesoscale eddies.The depth-integrated N2 fixation rates(INF,in terms of N)ranged from 52.4μmol/(m2·d)to 905.2μmol/(m2·d)(average at(428.9±305.5)μmol/(m2·d),n=15)in the winter.The contribution of surface NFR to primary production(PP)ranged from 1.7%to 18.5%in the summer,and the mean contribution of INF to new primary production(NPP)in the nSCS and ECS were estimated to be 11.0%and 36.7%in the winter.The contribution of INF to NPP(3.0%–93.9%)also decreased from oligotrophic sea toward the eutrophic waters affected by runoffs or the CEONE.Furthermore,we observed higher contributions compared to previous studies,revealing the vital roles of nitrogen fixation in sustaining the carbon pump of the nSCS and ECS.